Suppr超能文献

聚合物功能化磁性纳米粒子固定化血红素蛋白的电催化特性。

Electrocatalytic features of a heme protein attached to polymer-functionalized magnetic nanoparticles.

机构信息

Department of Chemistry, Oklahoma State University , Stillwater, Oklahoma 74078, United States.

出版信息

Anal Chem. 2013 Dec 3;85(23):11420-6. doi: 10.1021/ac402421z. Epub 2013 Nov 20.

Abstract

Direct electron-transfer and electrocatalytic kinetics of covalently attached myoglobin (MB) films on magnetic nanoparticles (MB-MNP(covalent)), in comparison to the corresponding physisorbed films and individual components, are reported for the first time. MB-MNP(covalent) ("-" denotes a covalent linkage) was adsorbed onto a cationic poly(ethyleneimine) layer (PEI) coated high-purity graphite (HPG) electrode. Similarly, films of myoglobin physisorbed on magnetic nanoparticles (MB/MNP(adsorbed), "/" denotes a noncovalent nature), only MB, or only MNP were constructed on HPG/PEI electrodes for comparison. The observed electron-transfer rate constants (k(s), s(-1)) were in the following order: MB-MNP(covalent) (69 ± 6 s(-1)), MB/MNP(adsorbed) (37 ± 2 s(-1)), only MB (27 ± 2 s(-1)), and only MNP (16 ± 3 s(-1)). The electrocatalytic properties of these films were investigated with the aid of tert-butylhydroperoxide as a model reactant, and its reduction kinetics were examined. We observed the following order of catalytic current density: MB-MNP(covalent) > MB/MNP(adsorbed) > only MNP > only MB, in agreement with the electron-transfer (ET) rates of MB-MNP(covalent) and MB/MNP(adsorbed) films. The crucial function of MNP in favorably altering the direct ET and electrocatalytic properties of both covalently bound MB and physisorbed MB molecules are discussed. In addition, the occurrence of a highly enhanced electron-hopping mechanism in the designed covalent MB-MNP(covalent) films over the corresponding physisorbed MB/MNP(adsorbed) film is proposed. The enhanced electron-transfer rates and catalytic current density suggest the advantages of using metalloenzymes covalently attached to polymer-functionalized magnetic nanoparticles for the development of modern highly efficient miniature biosensors and bioreactors.

摘要

首次报道了共价键合在磁性纳米粒子(MB-MNP(共价))上的固定化肌红蛋白(MB)膜的直接电子转移和电催化动力学,与相应的物理吸附膜和单个组分进行了比较。MB-MNP(共价)(“-”表示共价键)通过阳离子聚(乙二胺)层(PEI)吸附在高纯度石墨(HPG)电极上。同样,仅 MB 或仅 MNP 构建在 HPG/PEI 电极上的物理吸附在磁性纳米粒子上的肌红蛋白膜(MB/MNP(吸附),“/”表示非共价性质),用于比较。观察到的电子转移速率常数(k(s),s(-1))如下:MB-MNP(共价)(69 ± 6 s(-1)),MB/MNP(吸附)(37 ± 2 s(-1)),仅 MB(27 ± 2 s(-1)),和仅 MNP(16 ± 3 s(-1))。借助叔丁基过氧化氢作为模型反应物研究了这些膜的电催化性质,并检查了其还原动力学。我们观察到以下催化电流密度顺序:MB-MNP(共价)> MB/MNP(吸附)>仅 MNP>仅 MB,与 MB-MNP(共价)和 MB/MNP(吸附)膜的电子转移(ET)速率一致。讨论了 MNP 对共价键合的 MB 和物理吸附的 MB 分子的直接 ET 和电催化性质的有利改变的关键作用。此外,提出了在设计的共价 MB-MNP(共价)膜中比相应的物理吸附 MB/MNP(吸附)膜中出现的高度增强的电子跳跃机制。增强的电子转移速率和催化电流密度表明,将金属酶共价键合到聚合物功能化的磁性纳米粒子上用于开发现代高效微型生物传感器和生物反应器的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验