Measurement and Control Engineering Research Center, Idaho State University, Pocatello, ID 83209, USA.
Comput Biol Med. 2013 Nov;43(11):1815-26. doi: 10.1016/j.compbiomed.2013.08.023. Epub 2013 Sep 9.
Estimating skeletal muscle (finger) forces using surface Electromyography (sEMG) signals poses many challenges. In general, the sEMG measurements are based on single sensor data. In this paper, two novel hybrid fusion techniques for estimating the skeletal muscle force from the sEMG array sensors are proposed. The sEMG signals are pre-processed using five different filters: Butterworth, Chebychev Type II, Exponential, Half-Gaussian and Wavelet transforms. Dynamic models are extracted from the acquired data using Nonlinear Wiener Hammerstein (NLWH) models and Spectral Analysis Frequency Dependent Resolution (SPAFDR) models based system identification techniques. A detailed comparison is provided for the proposed filters and models using 18 healthy subjects. Wavelet transforms give higher mean correlation of 72.6 ± 1.7 (mean ± SD) and 70.4 ± 1.5 (mean ± SD) for NLWH and SPAFDR models, respectively, when compared to the other filters used in this work. Experimental verification of the fusion based hybrid models with wavelet transform shows a 96% mean correlation and 3.9% mean relative error with a standard deviation of ± 1.3 and ± 0.9 respectively between the overall hybrid fusion algorithm estimated and the actual force for 18 test subjects' k-fold cross validation data.
使用表面肌电图(sEMG)信号估计骨骼肌(手指)力量存在许多挑战。通常,sEMG 测量基于单个传感器数据。在本文中,提出了两种新颖的混合融合技术,用于从 sEMG 阵列传感器估计骨骼肌力。使用五种不同的滤波器对 sEMG 信号进行预处理:巴特沃斯、切比雪夫 II 型、指数、半高斯和小波变换。使用非线性 Wiener Hammerstein(NLWH)模型和基于系统识别技术的频谱分析频率相关分辨率(SPAFDR)模型从采集的数据中提取动态模型。使用 18 名健康受试者对提出的滤波器和模型进行了详细比较。与本工作中使用的其他滤波器相比,小波变换分别为 NLWH 和 SPAFDR 模型提供了 72.6±1.7(均值±标准差)和 70.4±1.5(均值±标准差)的更高平均相关性。使用基于小波变换的融合混合模型进行实验验证,在 18 个测试对象的 k 折交叉验证数据中,整体混合融合算法估计值与实际力之间的平均相关性为 96%,平均相对误差为 3.9%,标准差分别为±1.3 和±0.9。