Suppr超能文献

分子特性对 Zn(II)N- 烷基吡啶卟啉细胞摄取、亚细胞定位和光毒性的影响。

Effect of molecular characteristics on cellular uptake, subcellular localization, and phototoxicity of Zn(II) N-alkylpyridylporphyrins.

机构信息

From the Department of Biochemistry, Faculty of Medicine, and.

出版信息

J Biol Chem. 2013 Dec 20;288(51):36579-88. doi: 10.1074/jbc.M113.511642. Epub 2013 Nov 8.

Abstract

Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs.

摘要

合成了具有不同疏水性的四价锌(II)meso-四(N-烷基吡啶-2(或-3 或-4)-基)卟啉(ZnPs),以研究光敏剂(PS)的三维形状和疏水性如何影响细胞摄取、亚细胞分布和光动力疗效。通过将吡啶氮上的 N-烷基取代基从邻位移动到间位和对位,研究了分子的三维形状的影响。疏水性从较短的亲水(甲基)烷基链逐渐增加到较长的两亲性(己基)烷基链,增加了 ZnP PS 的光毒性。当烷基取代基从邻位移动到间位,以及从间位移动到对位时,所有衍生物的 PS 功效也得到了提高。PS 的细胞摄取和亚细胞分布均受亲脂性和卟啉环外围烷基链位置的影响。亲水性 ZnPs 主要表现为溶酶体分布,而两亲性己基衍生物则与线粒体、内质网和质膜相关。己基异构体的比较表明,细胞摄取和膜分配遵循对>间>邻的顺序。烷基取代基的位置和长度的变化会影响(i)与阴离子生物分子静电相互作用的正电荷暴露,以及(ii)分子的疏水性。PS 的电荷、疏水性和三维形状是决定细胞摄取、亚细胞分布以及 PS 光毒性的主要因素。

相似文献

1
2
Cationic amphiphilic Zn-porphyrin with high antifungal photodynamic potency.
Photochem Photobiol Sci. 2017 Nov 8;16(11):1709-1716. doi: 10.1039/c7pp00143f.
4
Optimizing Zn porphyrin-based photosensitizers for efficient antibacterial photodynamic therapy.
Photodiagnosis Photodyn Ther. 2017 Mar;17:154-159. doi: 10.1016/j.pdpdt.2016.11.009. Epub 2016 Nov 22.
6
Lipophilicity of potent porphyrin-based antioxidants: comparison of ortho and meta isomers of Mn(III) N-alkylpyridylporphyrins.
Free Radic Biol Med. 2009 Jul 1;47(1):72-8. doi: 10.1016/j.freeradbiomed.2009.04.002. Epub 2009 Apr 8.
8
Protein damage by photo-activated Zn(II) N-alkylpyridylporphyrins.
Amino Acids. 2012 Jan;42(1):117-28. doi: 10.1007/s00726-010-0640-1. Epub 2010 Jun 18.
9
Amphiphilic cationic Zn-porphyrins with high photodynamic antimicrobial activity.
Future Microbiol. 2015;10(5):709-24. doi: 10.2217/fmb.14.148.
10
A Novel Strategy Based on Zn(II) Porphyrins and Silver Nanoparticles to Photoinactivate .
Int J Nanomedicine. 2023 Jun 7;18:3007-3020. doi: 10.2147/IJN.S404422. eCollection 2023.

引用本文的文献

1
Singlet oxygen detection in vivo is hindered by nonspecific SOSG staining.
Sci Rep. 2024 Sep 5;14(1):20669. doi: 10.1038/s41598-024-71801-9.
4
A Novel Strategy Based on Zn(II) Porphyrins and Silver Nanoparticles to Photoinactivate .
Int J Nanomedicine. 2023 Jun 7;18:3007-3020. doi: 10.2147/IJN.S404422. eCollection 2023.
6
Photoinactivation of Yeast and Biofilm Communities of Mediated by ZnTnHex-2-PyP Porphyrin.
J Fungi (Basel). 2022 May 25;8(6):556. doi: 10.3390/jof8060556.
7
Evaluation of a Luminometric Cell Counting System in Context of Antimicrobial Photodynamic Inactivation.
Microorganisms. 2022 Apr 30;10(5):950. doi: 10.3390/microorganisms10050950.
8
9
A Bio-Conjugated Chlorin-Based Metal-Organic Framework for Targeted Photodynamic Therapy of Triple Negative Breast and Pancreatic Cancers.
ACS Appl Bio Mater. 2021 Feb 15;4(2):1432-1440. doi: 10.1021/acsabm.0c01324. Epub 2021 Jan 28.

本文引用的文献

1
Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death.
Photodiagnosis Photodyn Ther. 2005 Mar;2(1):1-23. doi: 10.1016/S1572-1000(05)00030-X.
2
Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization.
Photodiagnosis Photodyn Ther. 2004 Dec;1(4):279-93. doi: 10.1016/S1572-1000(05)00007-4.
4
Photodynamic therapy: current evidence and applications in dermatology.
Semin Cutan Med Surg. 2011 Dec;30(4):199-209. doi: 10.1016/j.sder.2011.08.001.
5
The potential of Zn(II) N-alkylpyridylporphyrins for anticancer therapy.
Anticancer Agents Med Chem. 2011 Feb;11(2):233-41. doi: 10.2174/187152011795255975.
6
Photodynamic therapy in dermatology: state-of-the-art.
Photodermatol Photoimmunol Photomed. 2010 Jun;26(3):118-32. doi: 10.1111/j.1600-0781.2010.00507.x.
7
Singlet oxygen: there is indeed something new under the sun.
Chem Soc Rev. 2010 Aug;39(8):3181-209. doi: 10.1039/b926014p. Epub 2010 Jun 22.
8
Effect of overall charge and charge distribution on cellular uptake, distribution and phototoxicity of cationic porphyrins in HEp2 cells.
J Photochem Photobiol B. 2010 Aug 2;100(2):100-11. doi: 10.1016/j.jphotobiol.2010.05.007. Epub 2010 May 23.
9
Mitochondria-targeting properties and photodynamic activities of porphyrin derivatives bearing cationic pendant.
J Photochem Photobiol B. 2010 Feb 12;98(2):167-71. doi: 10.1016/j.jphotobiol.2009.12.003. Epub 2009 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验