Department of Chemistry, University of Warwick , Coventry, United Kingdom .
Antioxid Redox Signal. 2014 Aug 10;21(5):786-803. doi: 10.1089/ars.2013.5728. Epub 2014 Feb 10.
The development of responsive drug delivery systems (DDS) holds great promise as a tool for improving the pharmacokinetic properties of drug compounds. Redox-sensitive systems are particularly attractive given the rich variety of redox gradients present in vivo. These gradients, where the circulation is generally considered oxidizing and the cellular environment is substantially more reducing, provide attractive options for targeted, specific cargo delivery.
Experimental evidence suggests that a "one size fits all" redox gradient does not exist. Rather, there are subtle differences in redox potential within a cell, while the chemical nature of reducing agents in these microenvironments varies. Recent works have demonstrated an ability to modulate the degradation rate of redox-susceptible groups and, hence, provide new tools to engineer precision-targeted DDS.
Modern synthetic and macromolecular chemistry provides access to a wide range of redox-susceptible architectures. However, in order to utilize these in real applications, the actual chemical nature of the redox-susceptible group, the sub-cellular location being targeted, and the redox microenvironment being encountered should be considered in detail. This is critical to avoid the over-simplification possible when using non-biological reducing agents, which may provide inaccurate kinetic information, and to ensure these materials can be advanced beyond simple "on/off" systems. Furthermore, a strong case can be made for the use of biorelevant reducing agents such as glutathione when demonstrating a materials redox response.
A further understanding of the complexities of the extra- and intracellular microenvironments would greatly assist with the design and application of DDS.
开发响应性药物递送系统(DDS)作为改善药物化合物药代动力学性质的工具具有很大的潜力。鉴于体内存在丰富多样的氧化还原梯度,氧化还原敏感系统尤其具有吸引力。这些梯度中,通常认为循环是氧化的,而细胞环境则大大还原,为靶向、特定货物的递供提供了有吸引力的选择。
实验证据表明,不存在“一刀切”的氧化还原梯度。相反,细胞内的氧化还原电位存在细微差异,而这些微环境中的还原剂的化学性质也有所不同。最近的研究工作表明,能够调节氧化还原敏感基团的降解速率,从而为工程精确靶向 DDS 提供新工具。
现代合成和高分子化学为氧化还原敏感结构提供了广泛的途径。然而,为了在实际应用中利用这些结构,应详细考虑氧化还原敏感基团的实际化学性质、目标的亚细胞位置和所遇到的氧化还原微环境。这对于避免使用非生物还原剂时可能出现的过度简化非常重要,非生物还原剂可能提供不准确的动力学信息,并确保这些材料能够超越简单的“开/关”系统。此外,在证明材料的氧化还原响应时,使用生物相关的还原剂(如谷胱甘肽)有充分的理由。
进一步了解细胞外和细胞内微环境的复杂性将极大地有助于 DDS 的设计和应用。