Idili Andrea, Plaxco Kevin W, Vallée-Bélisle Alexis, Ricci Francesco
Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata , Via della Ricerca Scientifica, 00133, Rome, Italy.
ACS Nano. 2013 Dec 23;7(12):10863-9. doi: 10.1021/nn404305e. Epub 2013 Nov 20.
Naturally occurring chemoreceptors almost invariably employ structure-switching mechanisms, an observation that has inspired the use of biomolecular switches in a wide range of artificial technologies in the areas of diagnostics, imaging, and synthetic biology. In one mechanism for generating such behavior, clamp-based switching, binding occurs via the clamplike embrace of two recognition elements onto a single target molecule. In addition to coupling recognition with a large conformational change, this mechanism offers a second advantage: it improves both affinity and specificity simultaneously. To explore the physics of such switches we have dissected here the thermodynamics of a clamp-switch that recognizes a target DNA sequence through both Watson-Crick base pairing and triplex-forming Hoogsteen interactions. When compared to the equivalent linear DNA probe (which relies solely on Watson-Crick interactions), the extra Hoogsteen interactions in the DNA clamp-switch increase the probe's affinity for its target by ∼0.29 ± 0.02 kcal/mol/base. The Hoogsteen interactions of the clamp-switch likewise provide an additional specificity check that increases the discrimination efficiency toward a single-base mismatch by 1.2 ± 0.2 kcal/mol. This, in turn, leads to a 10-fold improvement in the width of the "specificity window" of this probe relative to that of the equivalent linear probe. Given these attributes, clamp-switches should be of utility not only for sensing applications but also, in the specific field of DNA nanotechnology, for applications calling for a better control over the building of nanostructures and nanomachines.
天然存在的化学感受器几乎总是采用结构转换机制,这一观察结果激发了生物分子开关在诊断、成像和合成生物学等广泛人工技术领域的应用。在一种产生这种行为的机制中,即基于夹子的转换,结合是通过两个识别元件像夹子一样包围单个目标分子来实现的。除了将识别与大的构象变化相耦合外,这种机制还具有另一个优点:它能同时提高亲和力和特异性。为了探究此类开关的物理原理,我们在此剖析了一种夹子开关的热力学,该开关通过沃森-克里克碱基配对和形成三链体的 hoogsteen 相互作用来识别目标 DNA 序列。与等效的线性 DNA 探针(仅依赖沃森-克里克相互作用)相比,DNA 夹子开关中额外的 hoogsteen 相互作用使探针对其目标的亲和力提高了约 0.29±0.02 千卡/摩尔/碱基。夹子开关的 hoogsteen 相互作用同样提供了额外的特异性检查,使对单碱基错配的区分效率提高了 1.2±0.2 千卡/摩尔。这反过来又使该探针的“特异性窗口”宽度相对于等效线性探针提高了 10 倍。鉴于这些特性,夹子开关不仅应可用于传感应用,而且在 DNA 纳米技术的特定领域,对于需要更好地控制纳米结构和纳米机器构建的应用也应具有实用性。