Suppr超能文献

利用远端突变和别构抑制来调整、扩展和缩小基于适体的传感器的有用动态范围。

Using distal-site mutations and allosteric inhibition to tune, extend, and narrow the useful dynamic range of aptamer-based sensors.

机构信息

Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.

出版信息

J Am Chem Soc. 2012 Dec 26;134(51):20601-4. doi: 10.1021/ja310585e. Epub 2012 Dec 13.

Abstract

Here we demonstrate multiple, complementary approaches by which to tune, extend, or narrow the dynamic range of aptamer-based sensors. Specifically, we employ both distal-site mutations and allosteric control to tune the affinity and dynamic range of a fluorescent aptamer beacon. We show that allosteric control, achieved by using a set of easily designed oligonucleotide inhibitors that competes against the folding of the aptamer, allows rational fine-tuning of the affinity of our model aptamer across 3 orders of magnitude of target concentration with greater precision than that achieved using mutational approaches. Using these methods, we generate sets of aptamers varying significantly in target affinity and then combine them to recreate several of the mechanisms employed by nature to narrow or broaden the dynamic range of biological receptors. Such ability to finely control the affinity and dynamic range of aptamers may find many applications in synthetic biology, drug delivery, and targeted therapies, fields in which aptamers are of rapidly growing importance.

摘要

在这里,我们展示了多种互补的方法,通过这些方法可以调整、扩展或缩小基于适配体的传感器的动态范围。具体来说,我们采用远端位点突变和变构调控来调整荧光适配体信标的亲和力和动态范围。我们表明,通过使用一组易于设计的寡核苷酸抑制剂来实现变构调控,这些抑制剂与适配体的折叠竞争,从而可以合理地微调我们模型适配体的亲和力,使其在 3 个数量级的目标浓度范围内具有比突变方法更高的精度。使用这些方法,我们生成了一系列在靶亲和力上差异显著的适配体,然后将它们组合在一起,重新创建了自然界中用于缩小或拓宽生物受体动态范围的几种机制。这种能够精细控制适配体亲和力和动态范围的能力可能在合成生物学、药物输送和靶向治疗等领域有广泛的应用,在这些领域中,适配体的重要性正在迅速增加。

相似文献

2
3
Heterogeneous Electrochemical Aptamer-Based Sensor Surfaces for Controlled Sensor Response.
Langmuir. 2015 Jun 16;31(23):6563-9. doi: 10.1021/acs.langmuir.5b01418. Epub 2015 Jun 2.
4
Optimizing Stem Length To Improve Ligand Selectivity in a Structure-Switching Cocaine-Binding Aptamer.
ACS Sens. 2017 Oct 27;2(10):1539-1545. doi: 10.1021/acssensors.7b00619. Epub 2017 Oct 2.
5
Duplexed aptamers: history, design, theory, and application to biosensing.
Chem Soc Rev. 2019 Mar 4;48(5):1390-1419. doi: 10.1039/c8cs00880a.
6
Aptamer functionalized microcantilever sensors for cocaine detection.
Langmuir. 2011 Dec 6;27(23):14696-702. doi: 10.1021/la202067y. Epub 2011 Sep 14.
7
Development of single-stranded DNA aptamers for specific Bisphenol a detection.
Oligonucleotides. 2011 Mar-Apr;21(2):85-91. doi: 10.1089/oli.2010.0267. Epub 2011 Mar 17.
8
"Signal off" aptasensor based on enzyme inhibition induced by conformational switch.
Anal Chem. 2014 Feb 4;86(3):1437-44. doi: 10.1021/ac402258x. Epub 2014 Jan 10.
9
An aptamer-based fluorescent biosensor for potassium ion detection using a pyrene-labeled molecular beacon.
Anal Biochem. 2010 May 1;400(1):99-102. doi: 10.1016/j.ab.2009.12.034. Epub 2010 Jan 6.
10
Immobilization Strategies for Enhancing Sensitivity of Electrochemical Aptamer-Based Sensors.
ACS Appl Mater Interfaces. 2021 Mar 3;13(8):9491-9499. doi: 10.1021/acsami.0c20707. Epub 2021 Jan 15.

引用本文的文献

2
Advancements and Prospects in DNA-Based Bioanalytical Technology for Environmental Toxicant Detection.
JACS Au. 2025 Jun 2;5(6):2443-2462. doi: 10.1021/jacsau.5c00398. eCollection 2025 Jun 23.
3
Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring.
Adv Sci (Weinh). 2025 Jan;12(2):e2411433. doi: 10.1002/advs.202411433. Epub 2024 Nov 26.
4
Engineering modular and tunable single-molecule sensors by decoupling sensing from signal output.
Nat Nanotechnol. 2025 Feb;20(2):303-310. doi: 10.1038/s41565-024-01804-0. Epub 2024 Nov 7.
5
Nucleic acid-based wearable and implantable electrochemical sensors.
Chem Soc Rev. 2024 Jul 29;53(15):7960-7982. doi: 10.1039/d4cs00001c.
7
Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing.
Adv Biochem Eng Biotechnol. 2024;187:223-282. doi: 10.1007/10_2023_238.
8
Aptamer Conformational Dynamics Modulate Neurotransmitter Sensing in Nanopores.
ACS Nano. 2023 Oct 10;17(19):19168-19179. doi: 10.1021/acsnano.3c05377. Epub 2023 Sep 18.
9
The sequestration mechanism as a generalizable approach to improve the sensitivity of biosensors and bioassays.
Chem Sci. 2022 Sep 23;13(41):12219-12228. doi: 10.1039/d2sc03901j. eCollection 2022 Oct 26.
10
Programmable self-regulated molecular buffers for precise sustained drug delivery.
Nat Commun. 2022 Nov 2;13(1):6504. doi: 10.1038/s41467-022-33491-7.

本文引用的文献

2
Re-engineering electrochemical biosensors to narrow or extend their useful dynamic range.
Angew Chem Int Ed Engl. 2012 Jul 2;51(27):6717-21. doi: 10.1002/anie.201202204. Epub 2012 Jun 5.
3
Engineering biosensors with extended, narrowed, or arbitrarily edited dynamic range.
J Am Chem Soc. 2012 Feb 15;134(6):2876-9. doi: 10.1021/ja209850j. Epub 2012 Feb 6.
5
High-precision, in vitro validation of the sequestration mechanism for generating ultrasensitive dose-response curves in regulatory networks.
PLoS Comput Biol. 2011 Oct;7(10):e1002171. doi: 10.1371/journal.pcbi.1002171. Epub 2011 Oct 6.
6
Biomolecular filters for improved separation of output signals in enzyme logic systems applied to biomedical analysis.
Anal Chem. 2011 Nov 15;83(22):8383-6. doi: 10.1021/ac202139m. Epub 2011 Oct 17.
7
Aptamers for allosteric regulation.
Nat Chem Biol. 2011 Jul 18;7(8):519-27. doi: 10.1038/nchembio.609.
8
Allostery and population shift in drug discovery.
Curr Opin Pharmacol. 2010 Dec;10(6):715-22. doi: 10.1016/j.coph.2010.09.002. Epub 2010 Sep 29.
9
Structure-switching biosensors: inspired by Nature.
Curr Opin Struct Biol. 2010 Aug;20(4):518-26. doi: 10.1016/j.sbi.2010.05.001. Epub 2010 Jun 2.
10
Aptamer applications for targeted cancer therapy.
Future Oncol. 2010 Jul;6(7):1117-26. doi: 10.2217/fon.10.67.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验