Fachbereich Biologie-Botanik, Philipps-Universität, Lahnberge, D-3550, Marburg, Germany.
Planta. 1988 Feb;173(2):205-12. doi: 10.1007/BF00403012.
The photosynthetic apparatus of the unicellular green alga Scenedesmus obliquus adapts to different levels and qualities of light as documented by the fluence-rate curves of photosynthetic oxygen evolution. Cultures adapted to low fluence rates of white light (5W·m(-2)) have more chlorophyll (Chl) per cell mass, a higher chlorophyll to carotenoid ratio and a doubling of the chlorophyll to cytochrome f ratio compared with cells adapted to high fluence rates of white light (20W·m(-2)). Only small differences can be observed in the halfrise time of fluorescence induction, the electrophoretic profile of the pigment-protein complexes and the Chl a/Chl b-ratio. Scenedesmus cells adapted to blue light of high spectral purity demonstrate, in comparison with those adapted to red light, a higher chlorophyll content, a higher ratio of chlorophyll to carotenoid and a much higher ratio of chlorophyll to cytochrome f. Regarding these parameters and the fluence-rate curves of photosynthesis, the blue light causes the same effects as low levels of white light. In contrast, the action of red light resembles rather that of high levels of white light. Blue-light-adapted Scenedesmus cells have a smaller Chl a to Chl b ratio, a faster half-rise time of fluorescence induction and more chlorophyll in the light-harvesting system than red-light-adapted cells, as shown in the electrophoretic profile of the pigment-protein complexes. Based on these results we propose a model for the adaptation of the photosynthetic apparatus of Scenedesmus to different levels and qualities of light. In this model low as compared with high levels of white light result in an increase in the number of photosystems per electron-transport chain, but not in an increase in the size of these photosystems. The same result is obtained by adaptation to blue light. The lack of sufficient Chl b formation in red-light-adapted cells results in a decrease in the light harvesting chlorophyll-protein complexes and a photosynthetic response like that found in cells adapted to high light levels. The findings reported here confirm our earlier results in comparing blue-and red-light adaptation of the photosynthetic apparatus with adaptation to low and high levels of white light, respectively.
单细胞绿藻斜生栅藻的光合器官会根据光合氧释放的光强-量子产量曲线适应不同的光强和光质。与适应高光强(20W·m(-2))的细胞相比,适应低光强(5W·m(-2))的白光的细胞每细胞质量的叶绿素(Chl)更多,叶绿素与类胡萝卜素的比例更高,并且叶绿素与细胞色素 f 的比例增加了一倍。仅在荧光诱导的半衰期、色素-蛋白复合物的电泳谱和 Chl a/Chl b 比方面观察到较小的差异。与适应红光的细胞相比,适应高纯度蓝光的栅藻细胞显示出更高的叶绿素含量、更高的叶绿素与类胡萝卜素的比例以及更高的叶绿素与细胞色素 f 的比例。就这些参数和光合作用的光强-量子产量曲线而言,蓝光产生的效果与低水平的白光相同。相比之下,红光的作用更类似于高水平的白光。与适应红光的细胞相比,适应蓝光的栅藻细胞的 Chl a/Chl b 比值较小,荧光诱导的半衰期较快,并且在光捕获系统中有更多的叶绿素,如色素-蛋白复合物的电泳谱所示。基于这些结果,我们提出了一个模型,用于解释栅藻光合器官适应不同光强和光质的机制。在该模型中,与高水平的白光相比,低水平的白光导致每个电子传递链的光合系统数量增加,但这些光合系统的大小没有增加。适应蓝光也会产生同样的结果。适应红光的细胞中 Chl b 形成不足会导致光捕获叶绿素-蛋白复合物减少,并且光合作用的反应类似于适应高光强的细胞。这里报道的发现证实了我们之前的研究结果,即在比较光合器官的蓝光和红光适应与分别适应低光和高光强时,发现了类似的结果。