1] Program in Vertebrate Developmental Biology, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA [2] [3] Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA.
1] Program in Vertebrate Developmental Biology, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA [2].
Nature. 2013 Dec 19;504(7480):456-9. doi: 10.1038/nature12723. Epub 2013 Nov 13.
Heterotaxy is a disorder of left-right body patterning, or laterality, that is associated with major congenital heart disease. The aetiology and mechanisms underlying most cases of human heterotaxy are poorly understood. In vertebrates, laterality is initiated at the embryonic left-right organizer, where motile cilia generate leftward flow that is detected by immotile sensory cilia, which transduce flow into downstream asymmetric signals. The mechanism that specifies these two cilia types remains unknown. Here we show that the N-acetylgalactosamine-type O-glycosylation enzyme GALNT11 is crucial to such determination. We previously identified GALNT11 as a candidate disease gene in a patient with heterotaxy, and now demonstrate, in Xenopus tropicalis, that galnt11 activates Notch signalling. GALNT11 O-glycosylates human NOTCH1 peptides in vitro, thereby supporting a mechanism of Notch activation either by increasing ADAM17-mediated ectodomain shedding of the Notch receptor or by modification of specific EGF repeats. We further developed a quantitative live imaging technique for Xenopus left-right organizer cilia and show that Galnt11-mediated Notch1 signalling modulates the spatial distribution and ratio of motile and immotile cilia at the left-right organizer. galnt11 or notch1 depletion increases the ratio of motile cilia at the expense of immotile cilia and produces a laterality defect reminiscent of loss of the ciliary sensor Pkd2. By contrast, Notch overexpression decreases this ratio, mimicking the ciliopathy primary ciliary dyskinesia. Together our data demonstrate that Galnt11 modifies Notch, establishing an essential balance between motile and immotile cilia at the left-right organizer to determine laterality, and reveal a novel mechanism for human heterotaxy.
左右体模式或左右侧性的错位是一种与重大先天性心脏病相关的疾病。大多数人类左右侧性错位病例的病因和机制尚未被很好地理解。在脊椎动物中,左右侧性是在胚胎左右组织者中启动的,那里的运动纤毛产生向左的流动,而不运动的感觉纤毛则检测到这种流动,并将流动转化为下游的不对称信号。指定这两种纤毛类型的机制仍然未知。在这里,我们表明 N-乙酰半乳糖胺型 O-糖基化酶 GALNT11 对于这种决定至关重要。我们之前在一个左右侧性错位的患者中发现 GALNT11 是候选疾病基因,现在在 Xenopus tropicalis 中证明,galnt11 激活 Notch 信号。GALNT11 在体外对人 NOTCH1 肽进行 O-糖基化,从而支持 Notch 激活的机制,要么通过增加 Notch 受体的 ADAM17 介导的胞外结构域脱落,要么通过修饰特定的 EGF 重复。我们进一步开发了 Xenopus 左右组织者纤毛的定量活体成像技术,并表明 Galnt11 介导的 Notch1 信号调节左右组织者中运动和不运动纤毛的空间分布和比例。Galnt11 或 Notch1 的耗竭增加了运动纤毛的比例,牺牲了不运动纤毛的比例,并产生了类似于纤毛传感器 Pkd2 缺失的左右侧性缺陷。相比之下,Notch 的过表达降低了这个比例,模拟了纤毛病变原发性纤毛运动障碍。总之,我们的数据表明 Galnt11 修饰了 Notch,在左右组织者中建立了运动和不运动纤毛之间的重要平衡,以决定左右侧性,并揭示了人类左右侧性错位的一种新机制。