Suppr超能文献

平面细胞极性在小鼠和非洲爪蟾胚胎发生过程中使 nodal 纤毛的后向定位和左右轴的确定成为可能。

Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis.

机构信息

Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America.

出版信息

PLoS One. 2010 Feb 2;5(2):e8999. doi: 10.1371/journal.pone.0008999.

Abstract

Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP) in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP) is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2) in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.

摘要

脊椎动物的左右不对称性是由早期胚胎结构启动的,在人类和小鼠中称为腹节,在青蛙中称为体腔顶板(GRP)。在这些结构中,每个上皮细胞都有一个单一的运动纤毛,这些纤毛的协调摆动产生了一个向左的流体流动,这是启动左右不对称基因表达所必需的。认为这种向左的流体流动是由于纤毛的向后倾斜造成的,纤毛从每个细胞顶表面的近后部分突出。因此,细胞表现出形态上的平面极化。平面细胞极性(PCP)表现为上皮片中细胞的协调、极化取向,或者在收敛延伸过程中表现为定向细胞迁移和插入。一组进化上保守的蛋白质调节 PCP。在这里,我们提供了证据表明脊椎动物 PCP 蛋白在小鼠腹节和 Xenopus 体腔顶板中调节平面极性。VANGL1 和 PRICKLE2(PK2)在小鼠腹节细胞中的不对称前定位表明,这些细胞通过保守的分子机制具有平面极性。Vangl1 突变体表型较弱表明,Vangl1 功能受损可能与左右侧性缺陷有关。更强的功能证据来自 Xenopus GRP,我们在其中表明,干扰 VANGL2 蛋白功能会破坏对向左向流体流动所必需的运动纤毛的后向定位,并导致左侧特异性基因 Nodal 的异常表达。在小鼠和 Xenopus 胚胎组织者中观察到前后 PCP 反映了这种机制的强烈进化保守性,对于体节确定很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/562c/2814853/156d673ee960/pone.0008999.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验