Das Shankar P, Yoshimori Akira
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):043008. doi: 10.1103/PhysRevE.88.043008. Epub 2013 Oct 16.
Exact equations of motion for the microscopically defined collective density ρ(x,t) and the momentum density ĝ(x,t) of a fluid have been obtained in the past starting from the corresponding Langevin equations representing the dynamics of the fluid particles. In the present work we average these exact equations of microscopic dynamics over the local equilibrium distribution to obtain stochastic partial differential equations for the coarse-grained densities with smooth spatial and temporal dependence. In particular, we consider Dean's exact balance equation for the microscopic density of a system of interacting Brownian particles to obtain the basic equation of the dynamic density functional theory with noise. Our analysis demonstrates that on thermal averaging the dependence of the exact equations on the bare interaction potential is converted to dependence on the corresponding thermodynamic direct correlation functions in the coarse-grained equations.
过去,从代表流体粒子动力学的相应朗之万方程出发,已经得到了微观定义的流体集体密度ρ(x,t)和动量密度ĝ(x,t)的精确运动方程。在本工作中,我们对这些微观动力学的精确方程在局部平衡分布上进行平均,以得到具有光滑时空依赖性的粗粒化密度的随机偏微分方程。特别地,我们考虑相互作用的布朗粒子系统微观密度的迪恩精确平衡方程,以得到含噪声的动态密度泛函理论的基本方程。我们的分析表明,在热平均时,精确方程对裸相互作用势的依赖性在粗粒化方程中转变为对相应热力学直接相关函数的依赖性。