Suppr超能文献

将纳米颗粒与等温涨落流体动力学相结合:从微观到介观动力学的粗粒化

Coupling a nano-particle with isothermal fluctuating hydrodynamics: Coarse-graining from microscopic to mesoscopic dynamics.

作者信息

Español Pep, Donev Aleksandar

机构信息

Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Aptdo. 60141, E-28080 Madrid, Spain.

出版信息

J Chem Phys. 2015 Dec 21;143(23):234104. doi: 10.1063/1.4936775.

Abstract

We derive a coarse-grained description of the dynamics of a nanoparticle immersed in an isothermal simple fluid by performing a systematic coarse graining of the underlying microscopic dynamics. As coarse-grained or relevant variables, we select the position of the nanoparticle and the total mass and momentum density field of the fluid, which are locally conserved slow variables because they are defined to include the contribution of the nanoparticle. The theory of coarse graining based on the Zwanzing projection operator leads us to a system of stochastic ordinary differential equations that are closed in the relevant variables. We demonstrate that our discrete coarse-grained equations are consistent with a Petrov-Galerkin finite-element discretization of a system of formal stochastic partial differential equations which resemble previously used phenomenological models based on fluctuating hydrodynamics. Key to this connection between our "bottom-up" and previous "top-down" approaches is the use of the same dual orthogonal set of linear basis functions familiar from finite element methods (FEMs), both as a way to coarse-grain the microscopic degrees of freedom and as a way to discretize the equations of fluctuating hydrodynamics. Another key ingredient is the use of a "linear for spiky" weak approximation which replaces microscopic "fields" with a linear FE interpolant inside expectation values. For the irreversible or dissipative dynamics, we approximate the constrained Green-Kubo expressions for the dissipation coefficients with their equilibrium averages. Under suitable approximations, we obtain closed approximations of the coarse-grained dynamics in a manner which gives them a clear physical interpretation and provides explicit microscopic expressions for all of the coefficients appearing in the closure. Our work leads to a model for dilute nanocolloidal suspensions that can be simulated effectively using feasibly short molecular dynamics simulations as input to a FEM fluctuating hydrodynamic solver.

摘要

通过对基础微观动力学进行系统的粗粒化处理,我们得到了浸没在等温简单流体中的纳米颗粒动力学的粗粒化描述。作为粗粒化或相关变量,我们选择纳米颗粒的位置以及流体的总质量和动量密度场,它们是局部守恒的慢变量,因为它们被定义为包含纳米颗粒的贡献。基于兹万齐格投影算符的粗粒化理论使我们得到了一个在相关变量中封闭的随机常微分方程组。我们证明,我们的离散粗粒化方程与一个形式随机偏微分方程组的彼得罗夫 - 伽辽金有限元离散化是一致的,该方程组类似于先前基于波动流体动力学的唯象模型。我们“自下而上”方法与先前“自上而下”方法之间这种联系的关键在于使用了有限元方法(FEM)中熟悉的同一组双正交线性基函数,既作为粗粒化微观自由度的一种方式,也作为离散波动流体动力学方程的一种方式。另一个关键因素是使用“线性近似尖峰”弱近似,它在期望值内用线性有限元插值函数代替微观“场”。对于不可逆或耗散动力学,我们用其平衡平均值近似耗散系数的约束格林 - 久保表达式。在适当的近似下,我们以一种能给出清晰物理解释并为封闭中出现的所有系数提供显式微观表达式的方式,得到了粗粒化动力学的封闭近似。我们的工作得出了一个用于稀纳米胶体悬浮液的模型,该模型可以有效地使用可行的短分子动力学模拟作为有限元波动流体动力学求解器的输入进行模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验