Suppr超能文献

在一项大型社区随机试验中开发用于横断面 HIV 发病率估计的方法。

Development of methods for cross-sectional HIV incidence estimation in a large, community randomized trial.

机构信息

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America ; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.

出版信息

PLoS One. 2013 Nov 13;8(11):e78818. doi: 10.1371/journal.pone.0078818. eCollection 2013.

Abstract

BACKGROUND

Accurate methods of HIV incidence determination are critically needed to monitor the epidemic and determine the population level impact of prevention trials. One such trial, Project Accept, a Phase III, community-randomized trial, evaluated the impact of enhanced, community-based voluntary counseling and testing on population-level HIV incidence. The primary endpoint of the trial was based on a single, cross-sectional, post-intervention HIV incidence assessment.

METHODS AND FINDINGS

Test performance of HIV incidence determination was evaluated for 403 multi-assay algorithms [MAAs] that included the BED capture immunoassay [BED-CEIA] alone, an avidity assay alone, and combinations of these assays at different cutoff values with and without CD4 and viral load testing on samples from seven African cohorts (5,325 samples from 3,436 individuals with known duration of HIV infection [1 month to >10 years]). The mean window period (average time individuals appear positive for a given algorithm) and performance in estimating an incidence estimate (in terms of bias and variance) of these MAAs were evaluated in three simulated epidemic scenarios (stable, emerging and waning). The power of different test methods to detect a 35% reduction in incidence in the matched communities of Project Accept was also assessed. A MAA was identified that included BED-CEIA, the avidity assay, CD4 cell count, and viral load that had a window period of 259 days, accurately estimated HIV incidence in all three epidemic settings and provided sufficient power to detect an intervention effect in Project Accept.

CONCLUSIONS

In a Southern African setting, HIV incidence estimates and intervention effects can be accurately estimated from cross-sectional surveys using a MAA. The improved accuracy in cross-sectional incidence testing that a MAA provides is a powerful tool for HIV surveillance and program evaluation.

摘要

背景

准确的 HIV 发病率测定方法对于监测疫情和确定预防试验的人群水平影响至关重要。一个这样的试验,即接受项目,是一个 III 期、社区随机试验,评估了强化、以社区为基础的自愿咨询和检测对人群 HIV 发病率的影响。该试验的主要终点是基于单次、横断面、干预后 HIV 发病率评估。

方法和发现

对来自七个非洲队列的 7 个队列(5325 个来自已知 HIV 感染持续时间(1 个月至 >10 年)的 3436 人的样本)的 403 种多测定算法[MAA]的 HIV 发病率测定的测试性能进行了评估。这些 MAA 单独包含 BED 捕获免疫测定[BED-CEIA]、亲和力测定以及这些测定的组合,具有不同的临界值,包括和不包括 CD4 和病毒载量检测。评估了这些 MAA 估计平均窗口期(个体对特定算法呈阳性的平均时间)和估计发病率估计值(在偏差和方差方面)的性能,以及在三种模拟疫情情景(稳定、新兴和减少)中。还评估了不同测试方法在检测接受项目匹配社区中 35%的发病率降低的能力。确定了一种包含 BED-CEIA、亲和力测定、CD4 细胞计数和病毒载量的 MAA,其窗口期为 259 天,能够准确估计所有三种疫情情况下的 HIV 发病率,并为在接受项目中检测干预效果提供了足够的能力。

结论

在南部非洲环境中,使用 MAA 可以从横断面调查中准确估计 HIV 发病率和干预效果。MAA 提供的横断面发病率检测的准确性提高是 HIV 监测和项目评估的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8008/3827276/0a478811bb29/pone.0078818.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验