Suppr超能文献

考虑社区间异质性的横断面人类免疫缺陷病毒发病率估计

Cross-sectional human immunodeficiency virus incidence estimation accounting for heterogeneity across communities.

作者信息

Xu Yuejia, Laeyendecker Oliver, Wang Rui

机构信息

MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.

National Institute of Allergy and Infectious Diseases, Baltimore, Maryland.

出版信息

Biometrics. 2019 Sep;75(3):1017-1028. doi: 10.1111/biom.13046.

Abstract

Accurate estimation of human immunodeficiency virus (HIV) incidence rates is crucial for the monitoring of HIV epidemics, the evaluation of prevention programs, and the design of prevention studies. Traditional cohort approaches to measure HIV incidence require repeatedly testing large cohorts of HIV-uninfected individuals with an HIV diagnostic test (eg, enzyme-linked immunosorbent assay) for long periods of time to identify new infections, which can be prohibitively costly, time-consuming, and subject to loss to follow-up. Cross-sectional approaches based on the usual HIV diagnostic test and biomarkers of recent infection offer important advantages over standard cohort approaches, in terms of time, cost, and attrition. Cross-sectional samples usually consist of individuals from different communities. However, small sample sizes limit the ability to estimate community-specific incidence and existing methods typically ignore heterogeneity in incidence across communities. We propose a permutation test for the null hypothesis of no heterogeneity in incidence rates across communities, develop a random-effects model to account for this heterogeneity and to estimate community-specific incidence, and provide one way to estimate the coefficient of variation. We evaluate the performance of the proposed methods through simulation studies and apply them to the data from the National Institute of Mental Health Project ACCEPT, a phase 3 randomized controlled HIV prevention trial in Sub-Saharan Africa, to estimate the overall and community-specific HIV incidence rates.

摘要

准确估计人类免疫缺陷病毒(HIV)发病率对于监测HIV疫情、评估预防项目以及设计预防研究至关重要。传统的队列研究方法来测量HIV发病率需要长时间对大量未感染HIV的个体进行反复的HIV诊断检测(如酶联免疫吸附测定),以识别新感染病例,这可能成本过高、耗时且容易出现失访情况。基于常规HIV诊断检测和近期感染生物标志物的横断面研究方法在时间、成本和损耗方面比标准队列研究方法具有重要优势。横断面样本通常由来自不同社区的个体组成。然而,样本量较小限制了估计特定社区发病率的能力,并且现有方法通常忽略了不同社区发病率的异质性。我们提出一种用于检验各社区发病率无异质性这一零假设的置换检验,开发一种随机效应模型来考虑这种异质性并估计特定社区的发病率,并提供一种估计变异系数的方法。我们通过模拟研究评估所提出方法的性能,并将其应用于美国国立精神卫生项目ACCEPT的数据,该项目是撒哈拉以南非洲的一项3期随机对照HIV预防试验,以估计总体和特定社区的HIV发病率。

相似文献

2
Development of methods for cross-sectional HIV incidence estimation in a large, community randomized trial.
PLoS One. 2013 Nov 13;8(11):e78818. doi: 10.1371/journal.pone.0078818. eCollection 2013.
5
Cross-sectional HIV incidence estimation in HIV prevention research.
J Acquir Immune Defic Syndr. 2013 Jul;63 Suppl 2(0 2):S233-9. doi: 10.1097/QAI.0b013e3182986fdf.
6
7
Direct and indirect estimates of HIV-1 incidence in a high-prevalence population.
Am J Epidemiol. 1998 May 1;147(9):834-9. doi: 10.1093/oxfordjournals.aje.a009536.
8
Assessment of Overlap of Phylogenetic Transmission Clusters and Communities in Simple Sexual Contact Networks: Applications to HIV-1.
PLoS One. 2016 Feb 10;11(2):e0148459. doi: 10.1371/journal.pone.0148459. eCollection 2016.
9
An enhanced cross-sectional HIV incidence estimator that incorporates prior HIV test results.
Stat Med. 2024 Jul 30;43(17):3125-3139. doi: 10.1002/sim.10112. Epub 2024 May 27.
10
Sample size methods for estimating HIV incidence from cross-sectional surveys.
Biometrics. 2015 Dec;71(4):1121-9. doi: 10.1111/biom.12336. Epub 2015 Aug 24.

本文引用的文献

1
Cross-sectional estimates revealed high HIV incidence in Botswana rural communities in the era of successful ART scale-up in 2013-2015.
PLoS One. 2018 Oct 24;13(10):e0204840. doi: 10.1371/journal.pone.0204840. eCollection 2018.
2
Methods for sample size determination in cluster randomized trials.
Int J Epidemiol. 2015 Jun;44(3):1051-67. doi: 10.1093/ije/dyv113. Epub 2015 Jul 13.
4
Development of methods for cross-sectional HIV incidence estimation in a large, community randomized trial.
PLoS One. 2013 Nov 13;8(11):e78818. doi: 10.1371/journal.pone.0078818. eCollection 2013.
5
Evaluation of the false recent classification rates of multiassay algorithms in estimating HIV type 1 subtype C incidence.
AIDS Res Hum Retroviruses. 2014 Jan;30(1):29-36. doi: 10.1089/aid.2013.0055. Epub 2013 Sep 6.
7
Cross-sectional HIV incidence estimation in HIV prevention research.
J Acquir Immune Defic Syndr. 2013 Jul;63 Suppl 2(0 2):S233-9. doi: 10.1097/QAI.0b013e3182986fdf.
8
Estimation of HIV incidence using multiple biomarkers.
Am J Epidemiol. 2013 Feb 1;177(3):264-72. doi: 10.1093/aje/kws436. Epub 2013 Jan 9.
9
HIV incidence determination in the United States: a multiassay approach.
J Infect Dis. 2013 Jan 15;207(2):232-9. doi: 10.1093/infdis/jis659. Epub 2012 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验