Suppr超能文献

非人类灵长类动物中部分脑区覆盖的高分辨率磁共振成像扫描的联合配准

Co-registration of high resolution MRI scans with partial brain coverage in non-human primates.

作者信息

Lecoeur Jérémy, Wang Feng, Chen Li Min, Li Rui, Avison Malcom J, Dawant Benoit M

机构信息

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37240, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2011 Feb 11;7962. doi: 10.1117/12.877024.

Abstract

Dynamic structural and functional remodeling of the Central Nervous System occurs throughout the lifespan of the organism from the molecular to the systems level. MRI offers several advantages to observe this phenomenon: it is non-invasive and non-destructive, the contrast can be tuned to interrogate different tissue properties and imaging resolution can range from cortical columns to whole brain networks in the same session. To measure these changes reliably, functional maps generated over time with high resolution fMRI need to be registered accurately. This article presents a new method for the automatic registration of thin cortical MR volumes that are aligned with the functional maps. These acquisitions focus on the primary somato-sensory cortex, a region in the anterior parietal part of the brain, responsible for fine touch and proprioception. Currently, these slabs are acquired in approximately the same orientation from acquisition to acquisition and then registered by hand. Because they only cover a small portion of the cortex, their direct automatic registration is difficult. To address this issue, we propose a method relying on an intermediate image, acquired with a surface coil that covers a larger portion of the head to which the slabs can be registered. Because images acquired with surface coils suffer from severe intensity attenuation artifact, we also propose a method to register these. The results from data sets obtained with 3 squirrel monkeys show a registration accuracy of 30 micrometers.).

摘要

中枢神经系统的动态结构和功能重塑在生物体的整个生命周期中从分子水平到系统水平都会发生。磁共振成像(MRI)为观察这一现象提供了几个优势:它是非侵入性且非破坏性的,对比度可以调节以探究不同的组织特性,并且在同一次扫描中成像分辨率可以从皮质柱到全脑网络。为了可靠地测量这些变化,需要精确配准随时间用高分辨率功能磁共振成像(fMRI)生成的功能图谱。本文提出了一种自动配准与功能图谱对齐的薄皮质磁共振体积数据的新方法。这些采集聚焦于初级体感皮层,它是大脑顶叶前部的一个区域,负责精细触觉和本体感觉。目前,这些层块在每次采集时大致以相同的方向获取,然后手动配准。由于它们仅覆盖皮质的一小部分,直接自动配准很困难。为了解决这个问题,我们提出一种依赖于中间图像的方法,该中间图像是用覆盖头部较大部分的表面线圈获取的,层块可以配准到该中间图像上。由于用表面线圈获取的图像会受到严重的强度衰减伪影影响,我们还提出了一种配准这些图像的方法。用3只松鼠猴获得的数据集结果显示配准精度为30微米。

相似文献

1
Co-registration of high resolution MRI scans with partial brain coverage in non-human primates.
Proc SPIE Int Soc Opt Eng. 2011 Feb 11;7962. doi: 10.1117/12.877024.
2
Automated longitudinal registration of high resolution structural MRI brain sub-volumes in non-human primates.
J Neurosci Methods. 2011 Oct 30;202(1):99-108. doi: 10.1016/j.jneumeth.2011.08.046. Epub 2011 Sep 6.
5
Effects of MR surface coils on PET quantification.
Med Phys. 2011 Jun;38(6):2948-56. doi: 10.1118/1.3583697.
6
Integrated PET/MR imaging: automatic attenuation correction of flexible RF coils.
Med Phys. 2013 Aug;40(8):082301. doi: 10.1118/1.4812685.
7
Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging.
Phys Med Biol. 2015 Jun 21;60(12):4705-17. doi: 10.1088/0031-9155/60/12/4705. Epub 2015 May 28.
10
Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
Comput Med Imaging Graph. 2021 Jun;90:101897. doi: 10.1016/j.compmedimag.2021.101897. Epub 2021 Mar 11.

引用本文的文献

2
Fast Room Temperature Very Low Field-Magnetic Resonance Imaging System Compatible with MagnetoEncephaloGraphy Environment.
PLoS One. 2015 Dec 2;10(12):e0142701. doi: 10.1371/journal.pone.0142701. eCollection 2015.

本文引用的文献

2
Finger representations in human primary somatosensory cortex as revealed by high-resolution functional MRI of tactile stimulation.
Neuroimage. 2008 Aug 1;42(1):28-35. doi: 10.1016/j.neuroimage.2008.04.184. Epub 2008 Apr 25.
3
Correction of intensity variations in MR images for computer-aided tissue classification.
IEEE Trans Med Imaging. 1993;12(4):770-81. doi: 10.1109/42.251128.
4
Multi-modal medical image registration based on adaptive combination of intensity and gradient field mutual information.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1429-32. doi: 10.1109/IEMBS.2006.260489.
6
Mutual-information-based registration of medical images: a survey.
IEEE Trans Med Imaging. 2003 Aug;22(8):986-1004. doi: 10.1109/TMI.2003.815867.
7
A global optimisation method for robust affine registration of brain images.
Med Image Anal. 2001 Jun;5(2):143-56. doi: 10.1016/s1361-8415(01)00036-6.
8
Magnetic resonance image tissue classification using a partial volume model.
Neuroimage. 2001 May;13(5):856-76. doi: 10.1006/nimg.2000.0730.
9
Image registration by maximization of combined mutual information and gradient information.
IEEE Trans Med Imaging. 2000 Aug;19(8):809-14. doi: 10.1109/42.876307.
10
Automated model-based tissue classification of MR images of the brain.
IEEE Trans Med Imaging. 1999 Oct;18(10):897-908. doi: 10.1109/42.811270.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验