Suppr超能文献

使用部分容积模型的磁共振图像组织分类

Magnetic resonance image tissue classification using a partial volume model.

作者信息

Shattuck D W, Sandor-Leahy S R, Schaper K A, Rottenberg D A, Leahy R M

机构信息

Signal and Image Processing Institute, University of Southern California, Los Angeles, California 90089, USA.

出版信息

Neuroimage. 2001 May;13(5):856-76. doi: 10.1006/nimg.2000.0730.

Abstract

We describe a sequence of low-level operations to isolate and classify brain tissue within T1-weighted magnetic resonance images (MRI). Our method first removes nonbrain tissue using a combination of anisotropic diffusion filtering, edge detection, and mathematical morphology. We compensate for image nonuniformities due to magnetic field inhomogeneities by fitting a tricubic B-spline gain field to local estimates of the image nonuniformity spaced throughout the MRI volume. The local estimates are computed by fitting a partial volume tissue measurement model to histograms of neighborhoods about each estimate point. The measurement model uses mean tissue intensity and noise variance values computed from the global image and a multiplicative bias parameter that is estimated for each region during the histogram fit. Voxels in the intensity-normalized image are then classified into six tissue types using a maximum a posteriori classifier. This classifier combines the partial volume tissue measurement model with a Gibbs prior that models the spatial properties of the brain. We validate each stage of our algorithm on real and phantom data. Using data from the 20 normal MRI brain data sets of the Internet Brain Segmentation Repository, our method achieved average kappa indices of kappa = 0.746 +/- 0.114 for gray matter (GM) and kappa = 0.798 +/- 0.089 for white matter (WM) compared to expert labeled data. Our method achieved average kappa indices kappa = 0.893 +/- 0.041 for GM and kappa = 0.928 +/- 0.039 for WM compared to the ground truth labeling on 12 volumes from the Montreal Neurological Institute's BrainWeb phantom.

摘要

我们描述了一系列低级操作,用于在T1加权磁共振图像(MRI)中分离和分类脑组织。我们的方法首先使用各向异性扩散滤波、边缘检测和数学形态学的组合去除非脑组织。我们通过将三立方B样条增益场拟合到整个MRI体积中分布的图像不均匀性的局部估计值,来补偿由于磁场不均匀性导致的图像不均匀性。局部估计值是通过将部分体积组织测量模型拟合到每个估计点周围邻域的直方图来计算的。测量模型使用从全局图像计算的平均组织强度和噪声方差值,以及在直方图拟合期间为每个区域估计的乘法偏差参数。然后,使用最大后验分类器将强度归一化图像中的体素分类为六种组织类型。该分类器将部分体积组织测量模型与模拟大脑空间特性的吉布斯先验相结合。我们在真实数据和体模数据上验证了算法的每个阶段。使用来自互联网脑部分割存储库的20个正常MRI脑数据集的数据,与专家标记数据相比,我们的方法在灰质(GM)上的平均kappa指数为kappa = 0.746 +/- 0.114,在白质(WM)上的平均kappa指数为kappa = 0.798 +/- 0.089。与蒙特利尔神经病学研究所的BrainWeb体模中12个体积的地面真值标记相比,我们的方法在GM上的平均kappa指数为kappa = 0.893 +/- 0.041,在WM上的平均kappa指数为kappa = 0.928 +/- 0.039。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验