Deffieux Thomas, Younan Youliana, Wattiez Nicolas, Tanter Mickael, Pouget Pierre, Aubry Jean-François
Institut Langevin Ondes et Images, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Paris 75005, France.
Curr Biol. 2013 Dec 2;23(23):2430-3. doi: 10.1016/j.cub.2013.10.029. Epub 2013 Nov 14.
In vivo feasibility of using low-intensity focused ultrasound (FUS) to transiently modulate the function of regional brain tissue has been recently tested in anesthetized lagomorphs [1] and rodents [2-4]. Hypothetically, ultrasonic stimulation of the brain possesses several advantages [5]: it does not necessitate surgery or genetic alteration but could ultimately confer spatial resolutions superior to other noninvasive methods. Here, we gauged the ability of noninvasive FUS to causally modulate high-level cognitive behavior. Therefore, we examined how FUS might interfere with prefrontal activity in two awake macaque rhesus monkeys that had been trained to perform an antisaccade (AS) task. We show that ultrasound significantly modulated AS latencies. Such effects proved to be dependent on FUS hemifield of stimulation (relative latency increases most for ipsilateral AS). These results are interpreted in terms of a modulation of saccade inhibition to the contralateral visual field due to the disruption of processing across the frontal eye fields. Our study demonstrates for the first time the feasibility of using FUS stimulation to causally modulate behavior in the awake nonhuman primate brain. This result supports the use of this approach to study brain function. Neurostimulation with ultrasound could be used for exploratory and therapeutic purposes noninvasively, with potentially unprecedented spatial resolution.
近期,在麻醉的兔形目动物[1]和啮齿动物[2-4]中测试了使用低强度聚焦超声(FUS)瞬时调节局部脑组织功能的体内可行性。假设,对大脑进行超声刺激具有几个优点[5]:它不需要手术或基因改造,但最终可能具有优于其他非侵入性方法的空间分辨率。在这里,我们评估了非侵入性FUS因果调节高级认知行为的能力。因此,我们研究了FUS如何干扰两只经过训练执行反扫视(AS)任务的清醒恒河猴的前额叶活动。我们发现超声显著调节了AS潜伏期。这些效应被证明取决于FUS刺激的半视野(同侧AS的相对潜伏期增加最多)。这些结果被解释为由于额叶眼区处理过程的中断,对侧视野的扫视抑制受到调节。我们的研究首次证明了使用FUS刺激因果调节清醒非人灵长类动物大脑中行为的可行性。这一结果支持使用这种方法来研究脑功能。超声神经刺激可用于探索性和治疗性目的,具有潜在的前所未有的空间分辨率。