Suppr超能文献

Network thermodynamic modeling of hormone regulation of active Na+ transport in cultured renal epithelium (A6).

作者信息

Fidelman M L, Mikulecky D C

出版信息

Am J Physiol. 1986 Jun;250(6 Pt 1):C978-91. doi: 10.1152/ajpcell.1986.250.6.C978.

Abstract

A network thermodynamic model was developed to describe steady-state ion flows (Na+,K+, and Cl-) and related electrical events in a cultured renal epithelium (A6) derived from toad kidney. Three hypotheses for explaining the steady-state increases in short-circuit current (SCC) produced by aldosterone and/or insulin were examined using the model. Changing only the number of basolateral Na+-K+ pumps produced virtually no change in SCC and was ruled out. Changing only the number of apical Na+ channels could produce sufficient increases in SCC but presented problems in the pattern of changes produced in cell ion concentrations and therefore appeared unlikely. Changing both apical and basolateral parameters in a balanced, coordinated manner produced the maximal changes in SCC with the minimal changes in cell ion concentrations and appeared to be the "best" hypothesis. In addition, it was found necessary for tight junction permeability to increase as active Na+ transport increased under open-circuit conditions. Simulations, using these results, compared favorably with experimental data on the stimulatory effects of aldosterone and insulin, both separately and together, on active Na+ transport.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验