NTT Service Evolution Laboratories, NTT Corporation, Yokosuka-shi, Kanagawa, 239-0847, Japan.
Math Biosci Eng. 2014 Feb;11(1):49-62. doi: 10.3934/mbe.2014.11.49.
Because every spike of a neuron is determined by input signals, a train of spikes may contain information about the dynamics of unobserved neurons. A state-space method based on the leaky integrate-and-fire model, describing neuronal transformation from input signals to a spike train has been proposed for tracking input parameters represented by their mean and fluctuation [11]. In the present paper, we propose to make the estimation more realistic by adopting an LIF model augmented with an adaptive moving threshold. Moreover, because the direct state-space method is computationally infeasible for a data set comprising thousands of spikes, we further develop a practical method for transforming instantaneous firing characteristics back to input parameters. The instantaneous firing characteristics, represented by the firing rate and non-Poisson irregularity, can be estimated using a computationally feasible algorithm. We applied our proposed methods to synthetic data to clarify that they perform well.
由于每个神经元的尖峰都是由输入信号决定的,因此一连串的尖峰可能包含有关未观察到的神经元动态的信息。已经提出了一种基于漏积分和触发模型的状态空间方法,用于跟踪由其均值和波动表示的输入参数[11]。在本文中,我们通过采用带有自适应移动阈值的 LIF 模型,使估计更加符合实际情况。此外,由于直接状态空间方法对于包含数千个尖峰的数据集在计算上是不可行的,因此我们进一步开发了一种将瞬时点火特性转换回输入参数的实用方法。瞬时点火特性,由点火率和非泊松不规则性表示,可以使用计算上可行的算法进行估计。我们将我们提出的方法应用于合成数据,以明确它们的性能良好。