Suppr超能文献

基于具有适应特性的神经元模型,从单个尖峰序列中估计非平稳输入。

Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation.

机构信息

NTT Service Evolution Laboratories, NTT Corporation, Yokosuka-shi, Kanagawa, 239-0847, Japan.

出版信息

Math Biosci Eng. 2014 Feb;11(1):49-62. doi: 10.3934/mbe.2014.11.49.

Abstract

Because every spike of a neuron is determined by input signals, a train of spikes may contain information about the dynamics of unobserved neurons. A state-space method based on the leaky integrate-and-fire model, describing neuronal transformation from input signals to a spike train has been proposed for tracking input parameters represented by their mean and fluctuation [11]. In the present paper, we propose to make the estimation more realistic by adopting an LIF model augmented with an adaptive moving threshold. Moreover, because the direct state-space method is computationally infeasible for a data set comprising thousands of spikes, we further develop a practical method for transforming instantaneous firing characteristics back to input parameters. The instantaneous firing characteristics, represented by the firing rate and non-Poisson irregularity, can be estimated using a computationally feasible algorithm. We applied our proposed methods to synthetic data to clarify that they perform well.

摘要

由于每个神经元的尖峰都是由输入信号决定的,因此一连串的尖峰可能包含有关未观察到的神经元动态的信息。已经提出了一种基于漏积分和触发模型的状态空间方法,用于跟踪由其均值和波动表示的输入参数[11]。在本文中,我们通过采用带有自适应移动阈值的 LIF 模型,使估计更加符合实际情况。此外,由于直接状态空间方法对于包含数千个尖峰的数据集在计算上是不可行的,因此我们进一步开发了一种将瞬时点火特性转换回输入参数的实用方法。瞬时点火特性,由点火率和非泊松不规则性表示,可以使用计算上可行的算法进行估计。我们将我们提出的方法应用于合成数据,以明确它们的性能良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验