Suppr超能文献

K-Ras 和 H-Ras 异构体的单泛素化调节的差异。

Differences in the regulation of K-Ras and H-Ras isoforms by monoubiquitination.

机构信息

From the Departments of Biochemistry and Biophysics and.

出版信息

J Biol Chem. 2013 Dec 27;288(52):36856-62. doi: 10.1074/jbc.C113.525691. Epub 2013 Nov 18.

Abstract

Ras GTPases are signaling switches that control critical cellular processes including gene expression, differentiation, and apoptosis. The major Ras isoforms (K, H, and N) contain a conserved core GTPase domain, but have distinct biological functions. Among the three Ras isoforms there are clear differences in post-translational regulation, which contribute to differences in localization and signaling output. Modification by ubiquitination was recently reported to activate Ras signaling in cells, but the mechanisms of activation are not well understood. Here, we show that H-Ras is activated by monoubiquitination and that ubiquitination at Lys-117 accelerates intrinsic nucleotide exchange, thereby promoting GTP loading. This mechanism of Ras activation is distinct from K-Ras monoubiquitination at Lys-147, which leads to impaired regulator-mediated GTP hydrolysis. These findings reveal that different Ras isoforms are monoubiquitinated at distinct sites, with distinct mechanisms of action, but with a common ability to chronically activate the protein in the absence of a receptor signal or oncogenic mutation.

摘要

Ras GTPases 是信号开关,控制着包括基因表达、分化和凋亡在内的关键细胞过程。主要的 Ras 同工型(K、H 和 N)含有保守的核心 GTPase 结构域,但具有不同的生物学功能。在这三种 Ras 同工型中,翻译后修饰存在明显差异,这导致它们在定位和信号输出方面存在差异。最近有报道称,泛素化修饰可激活细胞中的 Ras 信号,但激活机制尚不清楚。在这里,我们表明 H-Ras 可通过单泛素化激活,并且赖氨酸 117 上的泛素化可加速内在核苷酸交换,从而促进 GTP 加载。这种 Ras 激活机制与赖氨酸 147 上的 K-Ras 单泛素化不同,后者导致调节因子介导的 GTP 水解受损。这些发现表明,不同的 Ras 同工型在不同的位点被单泛素化,具有不同的作用机制,但具有在没有受体信号或致癌突变的情况下慢性激活蛋白的共同能力。

相似文献

1
Differences in the regulation of K-Ras and H-Ras isoforms by monoubiquitination.
J Biol Chem. 2013 Dec 27;288(52):36856-62. doi: 10.1074/jbc.C113.525691. Epub 2013 Nov 18.
2
Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors.
Sci Signal. 2011 Mar 8;4(163):ra13. doi: 10.1126/scisignal.2001518.
3
Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function.
Nat Struct Mol Biol. 2013 Jan;20(1):46-52. doi: 10.1038/nsmb.2430. Epub 2012 Nov 25.
4
Degradation of activated K-Ras orthologue via K-Ras-specific lysine residues is required for cytokinesis.
J Biol Chem. 2014 Feb 14;289(7):3950-9. doi: 10.1074/jbc.M113.531178. Epub 2013 Dec 13.
5
The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects.
J Biol Chem. 2017 Aug 4;292(31):12981-12993. doi: 10.1074/jbc.M117.778886. Epub 2017 Jun 19.
6
The P34G mutation reduces the transforming activity of K-Ras and N-Ras in NIH 3T3 cells but not of H-Ras.
J Biol Chem. 2004 Aug 6;279(32):33480-91. doi: 10.1074/jbc.M404058200. Epub 2004 Jun 4.
7
RAS ubiquitylation modulates effector interactions.
Small GTPases. 2020 May;11(3):180-185. doi: 10.1080/21541248.2017.1371267. Epub 2017 Nov 29.
8
K128 ubiquitination constrains RAS activity by expanding its binding interface with GAP proteins.
EMBO J. 2024 Jul;43(14):2862-2877. doi: 10.1038/s44318-024-00146-w. Epub 2024 Jun 10.
10
Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling.
Mol Cell Biol. 2001 Nov;21(21):7345-54. doi: 10.1128/MCB.21.21.7345-7354.2001.

引用本文的文献

1
The ubiquitin code of RAS proteins: Decoding its role in cancer progression.
iScience. 2025 Jul 1;28(8):113029. doi: 10.1016/j.isci.2025.113029. eCollection 2025 Aug 15.
3
Pioneer in Molecular Biology: Conformational Ensembles in Molecular Recognition, Allostery, and Cell Function.
J Mol Biol. 2025 Jun 1;437(11):169044. doi: 10.1016/j.jmb.2025.169044. Epub 2025 Feb 25.
5
The differential interactomes of the KRAS splice variants identify BIRC6 as a ubiquitin ligase for KRAS4A.
Cell Rep. 2025 Jan 28;44(1):115087. doi: 10.1016/j.celrep.2024.115087. Epub 2024 Dec 19.
6
K128 ubiquitination constrains RAS activity by expanding its binding interface with GAP proteins.
EMBO J. 2024 Jul;43(14):2862-2877. doi: 10.1038/s44318-024-00146-w. Epub 2024 Jun 10.
7
Multi-monoubiquitylation controls VASP-mediated actin dynamics.
J Cell Sci. 2024 Jan 15;137(2). doi: 10.1242/jcs.261527. Epub 2024 Jan 26.
9
Lysines K117 and K147 play conserved roles in Ras activation from Drosophila to mammals.
G3 (Bethesda). 2023 Nov 1;13(11). doi: 10.1093/g3journal/jkad201.
10
Regulation of Ras Signaling by S-Nitrosylation.
Antioxidants (Basel). 2023 Aug 4;12(8):1562. doi: 10.3390/antiox12081562.

本文引用的文献

1
Protons as second messenger regulators of G protein signaling.
Mol Cell. 2013 Aug 22;51(4):531-8. doi: 10.1016/j.molcel.2013.07.012. Epub 2013 Aug 15.
2
Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function.
Nat Struct Mol Biol. 2013 Jan;20(1):46-52. doi: 10.1038/nsmb.2430. Epub 2012 Nov 25.
3
Regulation of RAS oncogenicity by acetylation.
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10843-8. doi: 10.1073/pnas.1201487109. Epub 2012 Jun 18.
4
Regulating the regulator: post-translational modification of RAS.
Nat Rev Mol Cell Biol. 2011 Dec 22;13(1):39-51. doi: 10.1038/nrm3255.
5
Functional specificity of ras isoforms: so similar but so different.
Genes Cancer. 2011 Mar;2(3):216-31. doi: 10.1177/1947601911408081.
7
Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors.
Sci Signal. 2011 Mar 8;4(163):ra13. doi: 10.1126/scisignal.2001518.
8
Ubiquitin on ras: warden or partner in crime?
Sci Signal. 2011 Mar 8;4(163):pe12. doi: 10.1126/scisignal.2001874.
9
Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders.
Hum Mutat. 2011 Jan;32(1):33-43. doi: 10.1002/humu.21377. Epub 2010 Dec 9.
10
Signal transduction: RABGEF1 fingers RAS for ubiquitination.
Curr Biol. 2010 Aug 10;20(15):R630-2. doi: 10.1016/j.cub.2010.06.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验