Suppr超能文献

用句法方法对脑干听觉诱发电位进行分类。

Classification of brain-stem auditory evoked potentials by syntactic methods.

作者信息

Madhavan G P, De Bruin H, Upton A R, Jernigan M E

出版信息

Electroencephalogr Clin Neurophysiol. 1986 Jul;65(4):289-96. doi: 10.1016/0168-5597(86)90007-9.

Abstract

A syntactic pattern recognition procedure for classification of brain-stem auditory evoked potential (BSAEP) is presented. A pre-processing stage of zero-phase bandpass filtering enhances the peaks and suppresses the noise. A finite-state grammar was designed to identify the peaks. Attributes of the peaks (latencies and amplitudes) that are identified are checked for their acceptability. A training run on 70 subjects of known diagnosis was performed to fine-tune the system and build up necessary acceptance criteria. Peak latency differences are used for the classification rather than absolute peak latencies. Acceptance criteria for peak latency differences were empirically optimized. A data base of normal BSAEPs, created during the training run, was updated and used during the test run. Test of the classifier using 60 subjects yielded a classification accuracy of 83%. The classifier has acceptable accuracy and can be modified for other evoked potentials such as visual and somatosensory by establishing relevant attribute tables.

摘要

本文提出了一种用于脑干听觉诱发电位(BSAEP)分类的句法模式识别程序。零相位带通滤波的预处理阶段增强了峰值并抑制了噪声。设计了一种有限状态语法来识别峰值。对识别出的峰值属性(潜伏期和振幅)进行可接受性检查。对70名已知诊断的受试者进行了训练运行,以微调系统并建立必要的接受标准。使用峰值潜伏期差异进行分类,而不是绝对峰值潜伏期。通过经验优化了峰值潜伏期差异的接受标准。在训练运行期间创建的正常BSAEP数据库在测试运行期间进行了更新和使用。使用60名受试者对分类器进行测试,分类准确率为83%。该分类器具有可接受的准确率,并且通过建立相关属性表,可以针对其他诱发电位(如视觉和体感诱发电位)进行修改。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验