Suppr超能文献

利用部分背景信息增强复杂网络中的社区结构检测

Enhanced community structure detection in complex networks with partial background information.

作者信息

Zhang Zhong-Yuan, Sun Kai-Di, Wang Si-Qi

机构信息

School of Statistics and Mathematics, Central University of Finance and Economics, P.R.China.

出版信息

Sci Rep. 2013 Nov 19;3:3241. doi: 10.1038/srep03241.

Abstract

Community structure detection in complex networks is important since it can help better understand the network topology and how the network works. However, there is still not a clear and widely-accepted definition of community structure, and in practice, different models may give very different results of communities, making it hard to explain the results. In this paper, different from the traditional methodologies, we design an enhanced semi-supervised learning framework for community detection, which can effectively incorporate the available prior information to guide the detection process and can make the results more explainable. By logical inference, the prior information is more fully utilized. The experiments on both the synthetic and the real-world networks confirm the effectiveness of the framework.

摘要

复杂网络中的社区结构检测非常重要,因为它有助于更好地理解网络拓扑以及网络的运行方式。然而,社区结构仍然没有一个清晰且被广泛接受的定义,并且在实践中,不同的模型可能会给出截然不同的社区检测结果,这使得结果难以解释。在本文中,与传统方法不同,我们设计了一种用于社区检测的增强型半监督学习框架,该框架可以有效地整合可用的先验信息来指导检测过程,并使结果更具可解释性。通过逻辑推理,先验信息得到了更充分的利用。在合成网络和真实世界网络上的实验证实了该框架的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b95a/4894381/8b55ae4a3cc0/srep03241-f1.jpg

相似文献

2
Detecting Community Structure by Using a Constrained Label Propagation Algorithm.
PLoS One. 2016 May 13;11(5):e0155320. doi: 10.1371/journal.pone.0155320. eCollection 2016.
3
Characterizing the Analogy Between Hyperbolic Embedding and Community Structure of Complex Networks.
Phys Rev Lett. 2018 Aug 31;121(9):098301. doi: 10.1103/PhysRevLett.121.098301.
4
Completeness of Community Structure in Networks.
Sci Rep. 2017 Jul 13;7(1):5269. doi: 10.1038/s41598-017-05585-6.
5
Link community detection using generative model and nonnegative matrix factorization.
PLoS One. 2014 Jan 28;9(1):e86899. doi: 10.1371/journal.pone.0086899. eCollection 2014.
6
A Unified Semi-Supervised Community Detection Framework Using Latent Space Graph Regularization.
IEEE Trans Cybern. 2015 Nov;45(11):2585-98. doi: 10.1109/TCYB.2014.2377154. Epub 2014 Dec 18.
7
Label propagation with α-degree neighborhood impact for network community detection.
Comput Intell Neurosci. 2014;2014:130689. doi: 10.1155/2014/130689. Epub 2014 Nov 26.
8
Active link selection for efficient semi-supervised community detection.
Sci Rep. 2015 Mar 12;5:9039. doi: 10.1038/srep09039.
9
Prioritizing network communities.
Nat Commun. 2018 Jun 29;9(1):2544. doi: 10.1038/s41467-018-04948-5.

引用本文的文献

1
mA regulator-mediated methylation modification patterns and tumor immune microenvironment in sarcoma.
Aging (Albany NY). 2022 Jan 3;14(1):330-353. doi: 10.18632/aging.203807.
2
Overlapping community finding with noisy pairwise constraints.
Appl Netw Sci. 2020;5(1):98. doi: 10.1007/s41109-020-00340-9. Epub 2020 Dec 11.
4
Exploring the roles of cannot-link constraint in community detection via Multi-variance Mixed Gaussian Generative Model.
PLoS One. 2017 Jul 5;12(7):e0178029. doi: 10.1371/journal.pone.0178029. eCollection 2017.
5
An efficient semi-supervised community detection framework in social networks.
PLoS One. 2017 May 23;12(5):e0178046. doi: 10.1371/journal.pone.0178046. eCollection 2017.
7
Structure and inference in annotated networks.
Nat Commun. 2016 Jun 16;7:11863. doi: 10.1038/ncomms11863.
8
Active link selection for efficient semi-supervised community detection.
Sci Rep. 2015 Mar 12;5:9039. doi: 10.1038/srep09039.

本文引用的文献

1
Attitudes and cognitive organization.
J Psychol. 1946 Jan;21:107-12. doi: 10.1080/00223980.1946.9917275.
2
Community detection algorithms: a comparative analysis.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 2):056117. doi: 10.1103/PhysRevE.80.056117. Epub 2009 Nov 30.
3
Benchmark graphs for testing community detection algorithms.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110. doi: 10.1103/PhysRevE.78.046110. Epub 2008 Oct 24.
4
Gene function prediction using labeled and unlabeled data.
BMC Bioinformatics. 2008 Jan 28;9:57. doi: 10.1186/1471-2105-9-57.
5
Maps of random walks on complex networks reveal community structure.
Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1118-23. doi: 10.1073/pnas.0706851105. Epub 2008 Jan 23.
6
Choosing negative examples for the prediction of protein-protein interactions.
BMC Bioinformatics. 2006 Mar 20;7 Suppl 1(Suppl 1):S2. doi: 10.1186/1471-2105-7-S1-S2.
7
Finding and evaluating community structure in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113. doi: 10.1103/PhysRevE.69.026113. Epub 2004 Feb 26.
8
Community structure in social and biological networks.
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6. doi: 10.1073/pnas.122653799.
9
Learning the parts of objects by non-negative matrix factorization.
Nature. 1999 Oct 21;401(6755):788-91. doi: 10.1038/44565.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验