Suppr超能文献

通过多变量混合高斯生成模型探索不可链接约束在社区检测中的作用。

Exploring the roles of cannot-link constraint in community detection via Multi-variance Mixed Gaussian Generative Model.

作者信息

Yang Liang, Ge Meng, Jin Di, He Dongxiao, Fu Huazhu, Wang Jing, Cao Xiaochun

机构信息

School of Information Engineering, Tianjin University of Commerce, Tianjin, China.

State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China.

出版信息

PLoS One. 2017 Jul 5;12(7):e0178029. doi: 10.1371/journal.pone.0178029. eCollection 2017.

Abstract

Due to the demand for performance improvement and the existence of prior information, semi-supervised community detection with pairwise constraints becomes a hot topic. Most existing methods have been successfully encoding the must-link constraints, but neglect the opposite ones, i.e., the cannot-link constraints, which can force the exclusion between nodes. In this paper, we are interested in understanding the role of cannot-link constraints and effectively encoding pairwise constraints. Towards these goals, we define an integral generative process jointly considering the network topology, must-link and cannot-link constraints. We propose to characterize this process as a Multi-variance Mixed Gaussian Generative (MMGG) Model to address diverse degrees of confidences that exist in network topology and pairwise constraints and formulate it as a weighted nonnegative matrix factorization problem. The experiments on artificial and real-world networks not only illustrate the superiority of our proposed MMGG, but also, most importantly, reveal the roles of pairwise constraints. That is, though the must-link is more important than cannot-link when either of them is available, both must-link and cannot-link are equally important when both of them are available. To the best of our knowledge, this is the first work on discovering and exploring the importance of cannot-link constraints in semi-supervised community detection.

摘要

由于对性能提升的需求以及先验信息的存在,带成对约束的半监督社区检测成为一个热门话题。大多数现有方法已成功对必须连接约束进行编码,但忽略了相反的约束,即不能连接约束,它可强制节点之间相互排斥。在本文中,我们关注理解不能连接约束的作用并有效编码成对约束。为实现这些目标,我们定义了一个联合考虑网络拓扑、必须连接和不能连接约束的积分生成过程。我们建议将此过程表征为多变量混合高斯生成(MMGG)模型,以处理网络拓扑和成对约束中存在的不同程度的置信度,并将其表述为加权非负矩阵分解问题。在人工网络和真实网络上的实验不仅说明了我们提出的MMGG的优越性,而且最重要的是揭示了成对约束的作用。也就是说,当必须连接和不能连接约束其中之一可用时,必须连接比不能连接更重要,但当两者都可用时,必须连接和不能连接同样重要。据我们所知,这是第一项发现并探索不能连接约束在半监督社区检测中的重要性的工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2a/5497956/3e06e1038c75/pone.0178029.g001.jpg

相似文献

1
Exploring the roles of cannot-link constraint in community detection via Multi-variance Mixed Gaussian Generative Model.
PLoS One. 2017 Jul 5;12(7):e0178029. doi: 10.1371/journal.pone.0178029. eCollection 2017.
2
An efficient semi-supervised community detection framework in social networks.
PLoS One. 2017 May 23;12(5):e0178046. doi: 10.1371/journal.pone.0178046. eCollection 2017.
4
Active semi-supervised community detection based on must-link and cannot-link constraints.
PLoS One. 2014 Oct 17;9(10):e110088. doi: 10.1371/journal.pone.0110088. eCollection 2014.
5
Link community detection using generative model and nonnegative matrix factorization.
PLoS One. 2014 Jan 28;9(1):e86899. doi: 10.1371/journal.pone.0086899. eCollection 2014.
6
Semi-Supervised Nonnegative Matrix Factorization via Constraint Propagation.
IEEE Trans Cybern. 2016 Jan;46(1):233-44. doi: 10.1109/TCYB.2015.2399533. Epub 2015 Feb 19.
7
Pairwise constrained concept factorization for data representation.
Neural Netw. 2014 Apr;52:1-17. doi: 10.1016/j.neunet.2013.12.007. Epub 2013 Dec 27.
8
Active link selection for efficient semi-supervised community detection.
Sci Rep. 2015 Mar 12;5:9039. doi: 10.1038/srep09039.
9
A Unified Semi-Supervised Community Detection Framework Using Latent Space Graph Regularization.
IEEE Trans Cybern. 2015 Nov;45(11):2585-98. doi: 10.1109/TCYB.2014.2377154. Epub 2014 Dec 18.
10
Pairwise Constraint-Guided Sparse Learning for Feature Selection.
IEEE Trans Cybern. 2016 Jan;46(1):298-310. doi: 10.1109/TCYB.2015.2401733. Epub 2015 Jul 6.

引用本文的文献

1
Overlapping community finding with noisy pairwise constraints.
Appl Netw Sci. 2020;5(1):98. doi: 10.1007/s41109-020-00340-9. Epub 2020 Dec 11.

本文引用的文献

1
Active link selection for efficient semi-supervised community detection.
Sci Rep. 2015 Mar 12;5:9039. doi: 10.1038/srep09039.
2
A Unified Semi-Supervised Community Detection Framework Using Latent Space Graph Regularization.
IEEE Trans Cybern. 2015 Nov;45(11):2585-98. doi: 10.1109/TCYB.2014.2377154. Epub 2014 Dec 18.
4
Graph spectra and the detectability of community structure in networks.
Phys Rev Lett. 2012 May 4;108(18):188701. doi: 10.1103/PhysRevLett.108.188701. Epub 2012 May 1.
5
Benchmark graphs for testing community detection algorithms.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110. doi: 10.1103/PhysRevE.78.046110. Epub 2008 Oct 24.
6
Finding community structure in networks using the eigenvectors of matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104. doi: 10.1103/PhysRevE.74.036104. Epub 2006 Sep 11.
7
Modularity and community structure in networks.
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82. doi: 10.1073/pnas.0601602103. Epub 2006 May 24.
8
Uncovering the overlapping community structure of complex networks in nature and society.
Nature. 2005 Jun 9;435(7043):814-8. doi: 10.1038/nature03607.
9
Identifying the role that animals play in their social networks.
Proc Biol Sci. 2004 Dec 7;271 Suppl 6(Suppl 6):S477-81. doi: 10.1098/rsbl.2004.0225.
10
Community structure in social and biological networks.
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6. doi: 10.1073/pnas.122653799.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验