1 Department of Urology, Northwestern University, Chicago, IL. 2 Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL. 3 Comprehensive Transplant Center, Northwestern University, Chicago, IL. 4 Department of Surgery, Northwestern University, Chicago, IL. 5 Columbia Center for Translational Immunology, Columbia University, New York, NY. 6 International Institute for Nanotechnology, Northwestern University, Evanston, IL. 7 Department of Chemistry, Northwestern University, Evanston, IL. 8 Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI. 9 Address correspondence to: Dixon B. Kaufman, M.D., Ph.D., Division of Transplantation, Department of Surgery, University of Wisconsin, H5/701 Clinical Sciences Center, 600 Highland Avenue, Madison, WI 53792-7375.
Transplantation. 2013 Nov 27;96(10):877-84. doi: 10.1097/TP.0b013e3182a4190e.
The efficiency of islet graft survival after intraportal implantation is compromised by host innate immune responses and the production of proinflammatory cytokines that cause acute cellular injury. This reaction activates intraislet nuclear factor-κB (NF-κB), causing production of gene products that have detrimental effects on β-cell survival and function. We hypothesized that small interfering RNA targeting of IKKβ, a crucial kinase in the NF-κB activation pathway, in islets before transplantation would ameliorate the detrimental effects of cytokines and improve islet survival after transplantation.
To test this hypothesis, we prepared small interfering RNA-based spherical nucleic acid nanoparticle conjugates targeting IKKβ IKKβ SNA-NCs). We treated isolated islets with IKKβ SNA-NCs and assessed the functional consequences of IKKβ knockdown in vitro and after intraportal transplantation in mice.
Treatment of freshly isolated mouse islets with IKKβ SNA-NCs reduced constitutive IKKβ expression and protected against proinflammatory cytokine-induced NF-κB activation, resulting in improved cell viability and decreased expression of gene products associated with β-cell dysfunction. Intraportal transplantation of a marginal mass (50 islets) of syngeneic islets treated with nanoparticle conjugates targeting IKKβ resulted in reversion to normoglycemia in 50% of streptozotocin-induced diabetic recipients (n=12) compared with 0% of controls (n=12). Histologic analyses showed reduced CD11b(+) cellular infiltration and decreased islet apoptosis.
These results are consistent with the hypothesis that inhibition of intraislet NF-κB activation ameliorates the detrimental effects of host cytokines and demonstrates that preconditioning freshly isolated islets in culture with IKKβ SNA-NCs may be a promising therapy to enhance islet graft function and survival after transplantation.
胰岛移植后,由于宿主固有免疫反应和促炎细胞因子的产生导致急性细胞损伤,胰岛移植物的存活率受到影响。这种反应会激活胰岛内核因子-κB(NF-κB),导致产生对β细胞存活和功能有不利影响的基因产物。我们假设在移植前用针对 NF-κB 激活途径中关键激酶 IKKβ 的小干扰 RNA(siRNA)对胰岛进行靶向处理,将减轻细胞因子的有害影响并改善移植后的胰岛存活。
为了验证这一假设,我们制备了针对 IKKβ 的小干扰 RNA 基于球形核酸纳米颗粒缀合物(IKKβ SNA-NCs)。我们用 IKKβ SNA-NCs 处理分离的胰岛,并在体外和小鼠门静脉内移植后评估 IKKβ 敲低的功能后果。
用 IKKβ SNA-NCs 处理新鲜分离的小鼠胰岛可降低组成性 IKKβ 表达并防止促炎细胞因子诱导的 NF-κB 激活,从而提高细胞活力并降低与β细胞功能障碍相关的基因产物的表达。门静脉内移植经靶向 IKKβ 的纳米颗粒缀合物处理的同基因胰岛(50 个胰岛)的边缘质量导致在链脲佐菌素诱导的糖尿病受体(n=12)中 50%恢复正常血糖水平(n=12),而对照组(n=12)则为 0%。组织学分析显示 CD11b(+)细胞浸润减少和胰岛细胞凋亡减少。
这些结果与抑制胰岛内 NF-κB 激活可减轻宿主细胞因子的有害影响的假设一致,并表明在培养中用 IKKβ SNA-NCs 预处理新鲜分离的胰岛可能是一种有前途的治疗方法,可增强胰岛移植物的功能和移植后的存活。