Suppr超能文献

植原体中潜在移动单元的水平转移。

Horizontal transfer of potential mobile units in phytoplasmas.

作者信息

Ku Chuan, Lo Wen-Sui, Kuo Chih-Horng

机构信息

Institute of Plant and Microbial Biology; Academia Sinica; Taipei, Taiwan.

出版信息

Mob Genet Elements. 2013 Sep 1;3(5):e26145. doi: 10.4161/mge.26145. Epub 2013 Aug 20.

Abstract

Phytoplasmas are uncultivated phytopathogenic bacteria that cause diseases in a wide range of economically important plants. Through secretion of effector proteins, they are able to manipulate their plant hosts to facilitate their multiplication and dispersal by insect vectors. The genome sequences of several phytoplasmas have been characterized to date and a group of putative composite transposons called potential mobile units (PMUs) are found in these highly reduced genomes. Recently, our team reported the genome sequence and comparative analysis of a peanut witches' broom (PnWB) phytoplasma, the first representative of the phytoplasma 16SrII group. Comparisons between the species phylogeny and the phylogenies of the PMU genes revealed that the PnWB PMU is likely to have been transferred from the 16SrI group. This indicates that PMUs are not only the DNA unit for transposition within a genome, but also for horizontal transfer among divergent phytoplasma lineages. Given the association of PMUs with effector genes, the mobility of PMUs across genomes has important implications for phytoplasma ecology and evolution.

摘要

植原体是一类尚未能人工培养的植物致病细菌,可致使多种具有重要经济价值的植物患病。通过分泌效应蛋白,它们能够操控其植物宿主,以便借助昆虫媒介实现自身的增殖与传播。截至目前,已有数种植原体的基因组序列得到了表征,并且在这些高度精简的基因组中发现了一组被称为潜在移动单元(PMU)的假定复合转座子。最近,我们的团队报道了花生丛枝病(PnWB)植原体的基因组序列及比较分析,它是植原体16SrII组的首个代表。物种系统发育与PMU基因系统发育之间的比较表明,PnWB PMU可能是从16SrI组转移而来的。这表明PMU不仅是基因组内转座的DNA单元,也是不同植原体谱系间水平转移的DNA单元。鉴于PMU与效应基因的关联,PMU在基因组间的移动性对植原体生态学和进化具有重要意义。

相似文献

1
Horizontal transfer of potential mobile units in phytoplasmas.
Mob Genet Elements. 2013 Sep 1;3(5):e26145. doi: 10.4161/mge.26145. Epub 2013 Aug 20.
3
4
Mobile units of DNA in phytoplasma genomes.
Mol Microbiol. 2010 Sep;77(6):1351-3. doi: 10.1111/j.1365-2958.2010.07308.x.
5
Multilocus sequences confirm the close genetic relationship of four phytoplasmas of peanut witches'-broom group 16SrII-A.
J Basic Microbiol. 2014 Aug;54(8):818-27. doi: 10.1002/jobm.201300140. Epub 2013 May 20.
7
Genomic Characterization of the Periwinkle Leaf Yellowing (PLY) Phytoplasmas in Taiwan.
Front Microbiol. 2019 Sep 19;10:2194. doi: 10.3389/fmicb.2019.02194. eCollection 2019.
8
Potential mobile units drive the horizontal transfer of phytoplasma effector genes.
Front Genet. 2023 May 11;14:1132432. doi: 10.3389/fgene.2023.1132432. eCollection 2023.
10
The genome of 'Candidatus Phytoplasma solani' strain SA-1 is highly dynamic and prone to adopting foreign sequences.
Syst Appl Microbiol. 2019 Mar;42(2):117-127. doi: 10.1016/j.syapm.2018.10.008. Epub 2018 Nov 1.

引用本文的文献

1
First Report of a Psyllid Vector of ' Phytoplasma pruni' (Strain 16SrIII-J).
Plants (Basel). 2025 Apr 23;14(9):1279. doi: 10.3390/plants14091279.
2
Divergence within the Taxon ' Phytoplasma asteris' Confirmed by Comparative Genome Analysis of Carrot Strains.
Microorganisms. 2024 May 17;12(5):1016. doi: 10.3390/microorganisms12051016.
3
Draft genome sequence of ' Phytoplasma asteris,' strain SW86 associated with sandal spike disease (SSD).
3 Biotech. 2024 Apr;14(4):109. doi: 10.1007/s13205-024-03952-5. Epub 2024 Mar 11.
4
Potential mobile units drive the horizontal transfer of phytoplasma effector genes.
Front Genet. 2023 May 11;14:1132432. doi: 10.3389/fgene.2023.1132432. eCollection 2023.
5
8
Comparison of Current Methods for Signal Peptide Prediction in Phytoplasmas.
Front Microbiol. 2021 Mar 25;12:661524. doi: 10.3389/fmicb.2021.661524. eCollection 2021.
9
Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions.
Mol Plant. 2020 Oct 5;13(10):1379-1393. doi: 10.1016/j.molp.2020.08.010. Epub 2020 Aug 21.

本文引用的文献

4
5
The genome biology of phytoplasma: modulators of plants and insects.
Curr Opin Microbiol. 2012 Jun;15(3):247-54. doi: 10.1016/j.mib.2012.04.002. Epub 2012 Apr 28.
6
Comparative analysis of gene content evolution in phytoplasmas and mycoplasmas.
PLoS One. 2012;7(3):e34407. doi: 10.1371/journal.pone.0034407. Epub 2012 Mar 27.
7
Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis.
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):E1254-63. doi: 10.1073/pnas.1105664108. Epub 2011 Nov 7.
9
Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants.
Plant Physiol. 2011 Oct;157(2):831-41. doi: 10.1104/pp.111.181586. Epub 2011 Aug 17.
10
Diverse targets of phytoplasma effectors: from plant development to defense against insects.
Annu Rev Phytopathol. 2011;49:175-95. doi: 10.1146/annurev-phyto-072910-095323.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验