Suppr超能文献

基因复制之外的酶进化:一种纳入水平基因转移的模型。

Enzyme evolution beyond gene duplication: A model for incorporating horizontal gene transfer.

作者信息

Noda-García Lianet, Barona-Gómez Francisco

机构信息

Evolution of Metabolic Diversity Laboratory; Laboratorio Nacional de Genómica para la Biodiversidad (Langebio); Cinvestav-IPN; Irapuato, México.

出版信息

Mob Genet Elements. 2013 Sep 1;3(5):e26439. doi: 10.4161/mge.26439. Epub 2013 Oct 2.

Abstract

Understanding the evolution of enzyme function after gene duplication has been a major goal of molecular biologists, biochemists and evolutionary biologists alike, for almost half a century. In contrast, the impact that horizontal gene transfer (HGT) has had on the evolution of enzyme specialization and the assembly of metabolic networks has just started to being investigated. Traditionally, evolutionary studies of enzymes have been limited to either the function of enzymes in vitro, or to sequence variability at the population level, where in almost all cases the starting conceptual framework embraces gene duplication as the mechanism responsible for the appearance of genetic redundancy. Very recently, we merged comparative phylogenomics, detection of selection signals, enzyme kinetics, X-ray crystallography and computational molecular dynamics, to characterize the sub-functionalization process of an amino acid biosynthetic enzyme prompted by an episode of HGT in bacteria. Some of the evolutionary implications of these functional studies, including a proposed model of enzyme specialization independent of gene duplication, are developed in this commentary.

摘要

近半个世纪以来,了解基因复制后酶功能的进化一直是分子生物学家、生物化学家和进化生物学家的主要目标。相比之下,水平基因转移(HGT)对酶特化进化和代谢网络组装的影响才刚刚开始被研究。传统上,酶的进化研究要么局限于酶在体外的功能,要么局限于群体水平的序列变异性,在几乎所有情况下,最初的概念框架都将基因复制视为导致遗传冗余出现的机制。最近,我们结合了比较系统发育基因组学、选择信号检测、酶动力学、X射线晶体学和计算分子动力学,来表征细菌中一次HGT事件引发的氨基酸生物合成酶的亚功能化过程。本评论阐述了这些功能研究的一些进化意义,包括一个独立于基因复制的酶特化模型。

相似文献

1
Enzyme evolution beyond gene duplication: A model for incorporating horizontal gene transfer.
Mob Genet Elements. 2013 Sep 1;3(5):e26439. doi: 10.4161/mge.26439. Epub 2013 Oct 2.
2
Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer.
Mol Biol Evol. 2013 Sep;30(9):2024-34. doi: 10.1093/molbev/mst115. Epub 2013 Jun 25.
4
Evidence of repeated horizontal transfer of sterol C-5 desaturase encoding genes among dikarya fungi.
Mol Phylogenet Evol. 2020 Sep;150:106850. doi: 10.1016/j.ympev.2020.106850. Epub 2020 May 11.
7
Horizontal gene transfer dynamics and distribution of fitness effects during microbial in silico evolution.
BMC Bioinformatics. 2012 Jun 25;13 Suppl 10(Suppl 10):S13. doi: 10.1186/1471-2105-13-S10-S13.
8
Comparative Genomic Analysis Reveals the Distribution, Organization, and Evolution of Metal Resistance Genes in the Genus .
Appl Environ Microbiol. 2019 Jan 9;85(2). doi: 10.1128/AEM.02153-18. Print 2019 Jan 15.
9
How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation.
FEBS J. 2020 Apr;287(7):1323-1342. doi: 10.1111/febs.15185. Epub 2020 Jan 10.
10

引用本文的文献

1
Differential transcription of expanded gene families in central carbon metabolism of A3(2).
Access Microbiol. 2020 Mar 30;2(6):acmi000122. doi: 10.1099/acmi.0.000122. eCollection 2020.
2
How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation.
FEBS J. 2020 Apr;287(7):1323-1342. doi: 10.1111/febs.15185. Epub 2020 Jan 10.
3
TrpM, a Small Protein Modulating Tryptophan Biosynthesis and Morpho-Physiological Differentiation in Streptomyces coelicolor A3(2).
PLoS One. 2016 Sep 26;11(9):e0163422. doi: 10.1371/journal.pone.0163422. eCollection 2016.
5
Gene duplication and the evolution of moonlighting proteins.
Front Genet. 2015 Jul 7;6:227. doi: 10.3389/fgene.2015.00227. eCollection 2015.

本文引用的文献

1
Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer.
Mol Biol Evol. 2013 Sep;30(9):2024-34. doi: 10.1093/molbev/mst115. Epub 2013 Jun 25.
2
Real-time evolution of new genes by innovation, amplification, and divergence.
Science. 2012 Oct 19;338(6105):384-7. doi: 10.1126/science.1226521.
3
Related (βα)8-barrel proteins in histidine and tryptophan biosynthesis: a paradigm to study enzyme evolution.
Chembiochem. 2011 Jul 4;12(10):1487-94. doi: 10.1002/cbic.201100082. Epub 2011 Jun 8.
4
Bisubstrate specificity in histidine/tryptophan biosynthesis isomerase from Mycobacterium tuberculosis by active site metamorphosis.
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3554-9. doi: 10.1073/pnas.1015996108. Epub 2011 Feb 14.
5
Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes.
PLoS Genet. 2011 Jan 27;7(1):e1001284. doi: 10.1371/journal.pgen.1001284.
6
Transcriptional regulation of histidine biosynthesis genes in Corynebacterium glutamicum.
Can J Microbiol. 2010 Feb;56(2):178-87. doi: 10.1139/w09-115.
7
Enzyme promiscuity: a mechanistic and evolutionary perspective.
Annu Rev Biochem. 2010;79:471-505. doi: 10.1146/annurev-biochem-030409-143718.
8
Evidence for escape from adaptive conflict?
Nature. 2009 Dec 10;462(7274):E1; discussion E2-3. doi: 10.1038/nature08663.
9
The subtle benefits of being promiscuous: adaptive evolution potentiated by enzyme promiscuity.
HFSP J. 2007 Jul;1(2):94-8. doi: 10.2976/1.2754665. Epub 2007 Jul 10.
10
Turning a hobby into a job: how duplicated genes find new functions.
Nat Rev Genet. 2008 Dec;9(12):938-50. doi: 10.1038/nrg2482.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验