Suppr超能文献

噪声暴露会破坏多感觉整合的成熟过程。

Noise-rearing disrupts the maturation of multisensory integration.

机构信息

Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.

出版信息

Eur J Neurosci. 2014 Feb;39(4):602-13. doi: 10.1111/ejn.12423. Epub 2013 Nov 19.

Abstract

It is commonly believed that the ability to integrate information from different senses develops according to associative learning principles as neurons acquire experience with co-active cross-modal inputs. However, previous studies have not distinguished between requirements for co-activation versus co-variation. To determine whether cross-modal co-activation is sufficient for this purpose in visual-auditory superior colliculus (SC) neurons, animals were reared in constant omnidirectional noise. By masking most spatiotemporally discrete auditory experiences, the noise created a sensory landscape that decoupled stimulus co-activation and co-variance. Although a near-normal complement of visual-auditory SC neurons developed, the vast majority could not engage in multisensory integration, revealing that visual-auditory co-activation was insufficient for this purpose. That experience with co-varying stimuli is required for multisensory maturation is consistent with the role of the SC in detecting and locating biologically significant events, but it also seems likely that this is a general requirement for multisensory maturation throughout the brain.

摘要

人们普遍认为,不同感觉信息的整合能力是根据联想学习原则发展的,因为神经元会随着共同活跃的跨模态输入而获得经验。然而,以前的研究并没有区分共同激活和共同变化的要求。为了确定在视觉-听觉上丘(SC)神经元中,跨模态的共同激活是否足以达到此目的,动物被饲养在恒定的全向噪声中。通过掩盖大多数时空离散的听觉体验,噪声创造了一种分离刺激共同激活和共同变化的感觉环境。尽管出现了近正常数量的视觉-听觉 SC 神经元,但绝大多数神经元都无法进行多感觉整合,这表明视觉-听觉的共同激活不足以达到此目的。这种与变化刺激共同体验对于多感觉成熟是必要的,这与 SC 在检测和定位生物意义上的事件中的作用一致,但也很可能这是大脑中多感觉成熟的一般要求。

相似文献

1
Noise-rearing disrupts the maturation of multisensory integration.
Eur J Neurosci. 2014 Feb;39(4):602-13. doi: 10.1111/ejn.12423. Epub 2013 Nov 19.
2
Noise-rearing precludes the behavioral benefits of multisensory integration.
Cereb Cortex. 2023 Feb 7;33(4):948-958. doi: 10.1093/cercor/bhac113.
3
Cross-Modal Competition: The Default Computation for Multisensory Processing.
J Neurosci. 2019 Feb 20;39(8):1374-1385. doi: 10.1523/JNEUROSCI.1806-18.2018. Epub 2018 Dec 20.
4
The normal environment delays the development of multisensory integration.
Sci Rep. 2017 Jul 6;7(1):4772. doi: 10.1038/s41598-017-05118-1.
5
Incorporating cross-modal statistics in the development and maintenance of multisensory integration.
J Neurosci. 2012 Feb 15;32(7):2287-98. doi: 10.1523/JNEUROSCI.4304-11.2012.
6
Multisensory Plasticity in Superior Colliculus Neurons is Mediated by Association Cortex.
Cereb Cortex. 2016 Mar;26(3):1130-7. doi: 10.1093/cercor/bhu295. Epub 2014 Dec 31.
7
Development of cortical influences on superior colliculus multisensory neurons: effects of dark-rearing.
Eur J Neurosci. 2013 May;37(10):1594-601. doi: 10.1111/ejn.12182. Epub 2013 Mar 27.
8
Multisensory integration in the superior colliculus requires synergy among corticocollicular inputs.
J Neurosci. 2009 May 20;29(20):6580-92. doi: 10.1523/JNEUROSCI.0525-09.2009.
10
What does a neuron learn from multisensory experience?
J Neurophysiol. 2015 Feb 1;113(3):883-9. doi: 10.1152/jn.00284.2014. Epub 2014 Nov 12.

引用本文的文献

1
Is Competition the Default Configuration of Cross-Sensory Interactions?
Eur J Neurosci. 2025 Aug;62(4):e70233. doi: 10.1111/ejn.70233.
3
The brain can develop conflicting multisensory principles to guide behavior.
Cereb Cortex. 2024 Jun 4;34(6). doi: 10.1093/cercor/bhae247.
4
The Development of Multisensory Integration at the Neuronal Level.
Adv Exp Med Biol. 2024;1437:153-172. doi: 10.1007/978-981-99-7611-9_10.
5
Atypical development of causal inference in autism inferred through a neurocomputational model.
Front Comput Neurosci. 2023 Oct 19;17:1258590. doi: 10.3389/fncom.2023.1258590. eCollection 2023.
6
Development of multisensory processing in ferret parietal cortex.
Eur J Neurosci. 2023 Sep;58(5):3226-3238. doi: 10.1111/ejn.16094. Epub 2023 Jul 15.
7
Crossmodal interactions in human learning and memory.
Front Hum Neurosci. 2023 May 17;17:1181760. doi: 10.3389/fnhum.2023.1181760. eCollection 2023.
8
Neuroplasticity and Crossmodal Connectivity in the Normal, Healthy Brain.
Psychol Neurosci. 2021 Sep;14(3):298-334. doi: 10.1037/pne0000258. Epub 2021 Jul 29.
10
Resolution of impaired multisensory processing in autism and the cost of switching sensory modality.
Commun Biol. 2022 Jun 30;5(1):601. doi: 10.1038/s42003-022-03519-1.

本文引用的文献

1
Development of cortical influences on superior colliculus multisensory neurons: effects of dark-rearing.
Eur J Neurosci. 2013 May;37(10):1594-601. doi: 10.1111/ejn.12182. Epub 2013 Mar 27.
2
The spike-timing dependence of plasticity.
Neuron. 2012 Aug 23;75(4):556-71. doi: 10.1016/j.neuron.2012.08.001.
3
Incorporating cross-modal statistics in the development and maintenance of multisensory integration.
J Neurosci. 2012 Feb 15;32(7):2287-98. doi: 10.1523/JNEUROSCI.4304-11.2012.
4
The applicability of spike time dependent plasticity to development.
Front Synaptic Neurosci. 2010 Jul 19;2:30. doi: 10.3389/fnsyn.2010.00030. eCollection 2010.
5
A developmental sensitive period for spike timing-dependent plasticity in the retinotectal projection.
Front Synaptic Neurosci. 2010 Jun 11;2:13. doi: 10.3389/fnsyn.2010.00013. eCollection 2010.
6
Early life exposure to noise alters the representation of auditory localization cues in the auditory space map of the barn owl.
J Neurophysiol. 2011 May;105(5):2522-35. doi: 10.1152/jn.00078.2011. Epub 2011 Mar 2.
9
Initiating the development of multisensory integration by manipulating sensory experience.
J Neurosci. 2010 Apr 7;30(14):4904-13. doi: 10.1523/JNEUROSCI.5575-09.2010.
10
Adult plasticity in multisensory neurons: short-term experience-dependent changes in the superior colliculus.
J Neurosci. 2009 Dec 16;29(50):15910-22. doi: 10.1523/JNEUROSCI.4041-09.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验