Department of Mathematics, Virginia Tech, Blacksburg, VA 24060, United States.
School of Biological Sciences and Department of Mathematics, Washington State University, Pullman, WA 99164, United States.
J Theor Biol. 2014 Feb 21;343:1-8. doi: 10.1016/j.jtbi.2013.11.003. Epub 2013 Nov 16.
We develop a mathematical model for the interaction between two competing equine infectious anemia virus strains and neutralizing antibodies. We predict that elimination of one or both virus strains depends on the initial antibody levels, the strength of antibody mediated neutralization, and the persistence of antibody over time. We further show that the ability of a subdominant, neutralization resistant virus to dominate the infection transiently or permanently is dependent on the antibody-mediated neutralization effect. Finally, we determine conditions for persistence of both virus strains. We fit our models to virus titers from horses (foals) with severe combined immunodeficiency to estimate virus-host parameters and to validate analytical results.
我们开发了一个数学模型,用于研究两种竞争的马传染性贫血病毒株与中和抗体之间的相互作用。我们预测,一种或两种病毒株的消除取决于初始抗体水平、抗体介导的中和作用的强度以及抗体随时间的持久性。我们进一步表明,亚优势、中和抗性病毒暂时或永久主导感染的能力取决于抗体介导的中和作用效果。最后,我们确定了两种病毒株持续存在的条件。我们将模型拟合到严重联合免疫缺陷症马(驹)的病毒滴度,以估计病毒-宿主参数并验证分析结果。