Suppr超能文献

单胺氧化酶-A 抑制剂氯吉宁可减少小鼠的乙醇诱导运动和自主摄入。

The MAO-A inhibitor clorgyline reduces ethanol-induced locomotion and its volitional intake in mice.

机构信息

Área de Psicobiologia, Universitat Jaume I, Avda. Sos Baynat s/n, 12701 Castellón, Spain.

Área de Psicobiologia, Universitat Jaume I, Avda. Sos Baynat s/n, 12701 Castellón, Spain.

出版信息

Pharmacol Biochem Behav. 2014 Jan;116:30-8. doi: 10.1016/j.pbb.2013.11.012. Epub 2013 Nov 16.

Abstract

Hydrogen peroxide is the co-substrate used by the enzyme catalase to form Compound I (the catalase-H2O2 system), which is the major pathway for the conversion of ethanol (EtOH) into acetaldehyde in the brain. This acetaldehyde has been involved in many of the effects of EtOH. Previous research demonstrated that treatments that change the levels of cerebral H2O2 available to catalase modulate the locomotor-stimulating effects of EtOH and its volitional intake in rodents. However, the source of H2O2 which is used by catalase to form Compound I and mediates the psychoactive actions of EtOH is unknown. One cause of the generation of H2O2 in the brain comes from the deamination of biogenic amines by the activity of MAO-A. Here we explore the consequences of the administration of the MAO-A inhibitor clorgyline on EtOH-induced locomotion and voluntary EtOH drinking. For the locomotor activity tests, we injected Swiss (RjOrl) mice intraperitoneally (IP) with clorgyline (0-10mg/kg) and later (0.5-8h) with EtOH (0-3.75 g/kg; IP). Following these treatments, mice were placed in locomotor activity chambers to measure their locomotion. For the drinking experiments, mice of the C57BL/6J strain were injected IP with clorgyline prior to offering them an EtOH (20%) solution following a drinking-in-the-dark procedure. Additional experiments were performed to assess the selectivity of this compound in altering EtOH-stimulated locomotion and EtOH intake. Moreover, we indirectly tested the ability of clorgyline to reduce brain H2O2 levels. We showed that this treatment selectively reduced EtOH-induced locomotion and its self-administration. Moreover, this compound decreased central H2O2 levels available to catalase. We suggest that H2O2 derived from the deamination of biogenic amines by the activity of MAO-A could determine the formation of brain EtOH-derived acetaldehyde. This centrally-formed acetaldehyde within the neurons of the aminergic system could play a role in the neurobehavioral properties of EtOH.

摘要

过氧化氢是酶过氧化氢酶的共底物,用于形成复合物 I(过氧化氢酶-H2O2 系统),这是大脑中乙醇(EtOH)转化为乙醛的主要途径。这种乙醛参与了 EtOH 的许多作用。先前的研究表明,改变大脑中过氧化氢酶可用的 H2O2 水平的治疗方法会调节 EtOH 的运动刺激作用及其在啮齿动物中的自愿摄入。然而,用于形成复合物 I 并介导 EtOH 精神活性作用的过氧化氢酶的 H2O2 来源尚不清楚。大脑中 H2O2 的产生的一个原因来自 MAO-A 活性对生物胺的脱氨基作用。在这里,我们探讨了 MAO-A 抑制剂氯丙嗪给药对 EtOH 诱导的运动和自愿饮用 EtOH 的影响。对于运动活性测试,我们给瑞士(RjOrl)小鼠腹膜内(IP)注射氯丙嗪(0-10mg/kg),之后(0.5-8h)给予 EtOH(0-3.75g/kg;IP)。在这些处理后,将小鼠放入运动活性室中以测量它们的运动。对于饮酒实验,C57BL/6J 品系的小鼠在 IP 注射氯丙嗪后,根据暗室饮酒程序给它们提供 EtOH(20%)溶液。进行了额外的实验来评估该化合物改变 EtOH 刺激的运动和 EtOH 摄入的选择性。此外,我们间接测试了氯丙嗪降低脑 H2O2 水平的能力。我们发现,这种治疗方法选择性地降低了 EtOH 诱导的运动和自我给药。此外,该化合物降低了过氧化氢酶可用的中枢 H2O2 水平。我们认为,MAO-A 活性对生物胺的脱氨基作用产生的 H2O2 可能决定了大脑中乙醇衍生的乙醛的形成。在胺能系统的神经元中形成的这种中枢性乙醛可能在 EtOH 的神经行为特性中发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验