Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Division of Systems and Control, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden; Center for Research and Development in Mathematics and Applications (CIDMA), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
Comput Methods Programs Biomed. 2014;113(1):23-36. doi: 10.1016/j.cmpb.2013.07.020. Epub 2013 Aug 28.
This paper addresses the local identifiability and sensitivity properties of two classes of Wiener models for the neuromuscular blockade and depth of hypnosis, when drug dose profiles like the ones commonly administered in the clinical practice are used as model inputs. The local parameter identifiability was assessed based on the singular value decomposition of the normalized sensitivity matrix. For the given input signal excitation, the results show an over-parameterization of the standard pharmacokinetic/pharmacodynamic models. The same identifiability assessment was performed on recently proposed minimally parameterized parsimonious models for both the neuromuscular blockade and the depth of hypnosis. The results show that the majority of the model parameters are identifiable from the available input-output data. This indicates that any identification strategy based on the minimally parameterized parsimonious Wiener models for the neuromuscular blockade and for the depth of hypnosis is likely to be more successful than if standard models are used.
本文针对两类用于神经肌肉阻滞和催眠深度的 Wiener 模型的局部可识别性和敏感性属性进行了研究,这些模型的药物剂量曲线采用了临床实践中常用的曲线作为模型输入。局部参数可识别性基于归一化敏感性矩阵的奇异值分解进行评估。对于给定的输入信号激励,结果表明标准药代动力学/药效动力学模型存在过度参数化。对最近提出的用于神经肌肉阻滞和催眠深度的最小参数简约 Wiener 模型进行了相同的可识别性评估。结果表明,从可用的输入-输出数据中可以识别出大多数模型参数。这表明,任何基于神经肌肉阻滞和催眠深度的最小参数简约 Wiener 模型的识别策略都可能比使用标准模型更成功。