Suppr超能文献

利用乳糜管的体外模型展示脂类在淋巴内皮细胞中的 ATP 依赖性跨细胞转运。

Demonstration of ATP-dependent, transcellular transport of lipid across the lymphatic endothelium using an in vitro model of the lacteal.

机构信息

Woodruff School of Mechanical Engineering, Atlanta, Georgia, USA.

出版信息

Pharm Res. 2013 Dec;30(12):3271-80. doi: 10.1007/s11095-013-1218-x. Epub 2013 Nov 20.

Abstract

PURPOSE

The lymphatic system plays crucial roles in tissue fluid balance, trafficking of immune cells, and the uptake of dietary lipid from the intestine. Given these roles there has been an interest in targeting lymphatics through oral lipid-based formulations or intradermal delivery of drug carrier systems. However the mechanisms regulating lipid uptake by lymphatics remain unknown. Thus we sought to modify a previously developed in vitro model to investigate the role of ATP in lipid uptake into the lymphatics.

METHODS

Lymphatic endothelial cells were cultured on a transwell membrane and the effective permeability to free fatty acid and Caco-2 cell-secreted lipid was calculated in the presence or absence of the ATP inhibitor sodium azide.

RESULTS

ATP inhibition reduced Caco-2 cell-secreted lipid transport, but not dextran transport. FFA transport was ATP-dependent primarily during early periods of ATP inhibition, while Caco-2 cell-secreted lipid transport was lowered at all time points studied. Furthermore, the transcellular component of transport was highly ATP-dependent, a mechanism not observed in fibroblasts, suggesting these mechanisms are unique to lymphatics. Total transport of Caco-2 cell-secreted lipid was dose-dependently reduced by ATP inhibition, and transcellular lipoprotein transport was completely attenuated.

CONCLUSION

The transport of lipid across the lymphatic endothelium as demonstrated with this in vitro model occurs in part by an ATP-dependent, transcellular route independent of passive permeability. It remains to be determined the extent that this mechanism exists in vivo and future work should be directed in this area.

摘要

目的

淋巴系统在组织液平衡、免疫细胞运输以及从肠道摄取膳食脂质方面发挥着关键作用。鉴于这些作用,人们一直有兴趣通过口服脂质制剂或皮内递送药物载体系统来靶向淋巴管。然而,调节淋巴管摄取脂质的机制仍不清楚。因此,我们试图修改先前开发的体外模型,以研究 ATP 在脂质摄取到淋巴管中的作用。

方法

将淋巴内皮细胞培养在 Transwell 膜上,并在存在或不存在 ATP 抑制剂叠氮化钠的情况下计算游离脂肪酸和 Caco-2 细胞分泌的脂质的有效渗透系数。

结果

ATP 抑制降低了 Caco-2 细胞分泌的脂质转运,但不降低葡聚糖转运。FFA 转运主要在 ATP 抑制的早期阶段依赖于 ATP,而 Caco-2 细胞分泌的脂质转运在所有研究的时间点都降低。此外,跨细胞转运成分高度依赖于 ATP,这种机制在成纤维细胞中观察不到,表明这些机制是淋巴管所特有的。Caco-2 细胞分泌的脂质的总转运通过 ATP 抑制呈剂量依赖性降低,并且跨细胞脂蛋白转运完全被抑制。

结论

通过这种体外模型证明,脂质穿过淋巴管内皮的转运部分通过一种依赖于 ATP 的、与被动通透性无关的跨细胞途径发生。尚需确定该机制在体内的存在程度,未来的工作应针对这一领域。

相似文献

2
Transcellular Pathways in Lymphatic Endothelial Cells Regulate Changes in Solute Transport by Fluid Stress.
Circ Res. 2017 Apr 28;120(9):1440-1452. doi: 10.1161/CIRCRESAHA.116.309828. Epub 2017 Jan 27.
3
A tissue-engineered model of the intestinal lacteal for evaluating lipid transport by lymphatics.
Biotechnol Bioeng. 2009 Aug 15;103(6):1224-35. doi: 10.1002/bit.22337.
5
Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery.
J Colloid Interface Sci. 2016 Feb 1;463:258-65. doi: 10.1016/j.jcis.2015.10.057. Epub 2015 Oct 24.
6
Phosphate-dependent luminal ATP metabolism regulates transcellular calcium transport in intestinal epithelial cells.
FASEB J. 2018 Apr;32(4):1903-1915. doi: 10.1096/fj.201700631R. Epub 2018 Jan 5.
7
The Glycocalyx and Pressure-Dependent Transcellular Albumin Transport.
Cardiovasc Eng Technol. 2020 Dec;11(6):655-662. doi: 10.1007/s13239-020-00489-5. Epub 2020 Oct 1.
9
Cellular internalization pathway and transcellular transport of pegylated polyester nanoparticles in Caco-2 cells.
Int J Pharm. 2013 Mar 10;445(1-2):58-68. doi: 10.1016/j.ijpharm.2013.01.060. Epub 2013 Feb 1.

引用本文的文献

1
Understanding the Lymphatic System: Tissue-on-Chip Modeling.
Annu Rev Biomed Eng. 2025 May;27(1):73-100. doi: 10.1146/annurev-bioeng-110222-100246. Epub 2025 Jan 22.
2
In Vitro Models of Blood and Lymphatic Vessels-Connecting Tissues and Immunity.
Adv Biol (Weinh). 2023 May;7(5):e2200041. doi: 10.1002/adbi.202200041. Epub 2022 Jun 25.
3
Molecular Mechanisms Controlling Lymphatic Endothelial Junction Integrity.
Front Cell Dev Biol. 2021 Jan 14;8:627647. doi: 10.3389/fcell.2020.627647. eCollection 2020.
4
Application of microscale culture technologies for studying lymphatic vessel biology.
Microcirculation. 2019 Nov;26(8):e12547. doi: 10.1111/micc.12547. Epub 2019 May 2.
5
Lymphatic Vessel Network Structure and Physiology.
Compr Physiol. 2018 Dec 13;9(1):207-299. doi: 10.1002/cphy.c180015.
6
Insulin resistance disrupts cell integrity, mitochondrial function, and inflammatory signaling in lymphatic endothelium.
Microcirculation. 2018 Oct;25(7):e12492. doi: 10.1111/micc.12492. Epub 2018 Aug 27.
7
Intestinal lymphatic vasculature: structure, mechanisms and functions.
Nat Rev Gastroenterol Hepatol. 2017 Sep;14(9):510-526. doi: 10.1038/nrgastro.2017.79. Epub 2017 Jun 28.
9
Postprandial lymphatic pump function after a high-fat meal: a characterization of contractility, flow, and viscosity.
Am J Physiol Gastrointest Liver Physiol. 2016 May 15;310(10):G776-89. doi: 10.1152/ajpgi.00318.2015. Epub 2016 Mar 11.
10
From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity.
Nat Rev Drug Discov. 2015 Nov;14(11):781-803. doi: 10.1038/nrd4608. Epub 2015 Oct 16.

本文引用的文献

3
Prevention of nodal metastases in breast cancer following the lymphatic migration of paclitaxel-loaded expansile nanoparticles.
Biomaterials. 2013 Feb;34(7):1810-9. doi: 10.1016/j.biomaterials.2012.11.038. Epub 2012 Dec 8.
4
Dual-channel in-situ optical imaging system for quantifying lipid uptake and lymphatic pump function.
J Biomed Opt. 2012 Aug;17(8):086005. doi: 10.1117/1.JBO.17.8.086005.
5
Differential requirement for ROCK in dendritic cell migration within lymphatic capillaries in steady-state and inflammation.
Blood. 2012 Sep 13;120(11):2249-58. doi: 10.1182/blood-2012-03-417923. Epub 2012 Jul 31.
6
Sensitivity analysis of near-infrared functional lymphatic imaging.
J Biomed Opt. 2012 Jun;17(6):066019. doi: 10.1117/1.JBO.17.6.066019.
7
CD137 on inflamed lymphatic endothelial cells enhances CCL21-guided migration of dendritic cells.
FASEB J. 2012 Aug;26(8):3380-92. doi: 10.1096/fj.11-201061. Epub 2012 May 16.
8
Impaired lymphatic contraction associated with immunosuppression.
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18784-9. doi: 10.1073/pnas.1116152108. Epub 2011 Nov 7.
9
Secretion of adipokines by human adipose tissue in vivo: partitioning between capillary and lymphatic transport.
Am J Physiol Endocrinol Metab. 2011 Oct;301(4):E659-67. doi: 10.1152/ajpendo.00058.2011. Epub 2011 Jul 12.
10
Intestinal lymphatic transport for drug delivery.
Adv Drug Deliv Rev. 2011 Sep 10;63(10-11):923-42. doi: 10.1016/j.addr.2011.05.019. Epub 2011 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验