Suppr超能文献

相似文献

1
Coherent Pattern Prediction in Swarms of Delay-Coupled Agents.
IEEE Trans Robot. 2012 Oct;28(5):1034-1044. doi: 10.1109/tro.2012.2198511.
2
Delay-induced instabilities in self-propelling swarms.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):035203. doi: 10.1103/PhysRevE.77.035203. Epub 2008 Mar 19.
3
Collective motion patterns of swarms with delay coupling: Theory and experiment.
Phys Rev E. 2016 Mar;93(3):032307. doi: 10.1103/PhysRevE.93.032307. Epub 2016 Mar 7.
4
Noise Induced Pattern Switching in Randomly Distributed Delayed Swarms.
Proc Am Control Conf. 2013;2013:4587-4591. doi: 10.1109/ACC.2013.6580546.
5
Noise, Bifurcations, and Modeling of Interacting Particle Systems.
Rep U S. 2011:3905-3910. doi: 10.1109/IROS.2011.6048160.
6
Critical transition for colliding swarms.
Phys Rev E. 2021 Jun;103(6-1):062602. doi: 10.1103/PhysRevE.103.062602.
7
Independent Pattern Formation of Nanorod and Nanoparticle Swarms under an Oscillating Field.
ACS Nano. 2021 Mar 23;15(3):4429-4439. doi: 10.1021/acsnano.0c08284. Epub 2021 Feb 18.
8
Noise-induced breakdown of coherent collective motion in swarms.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Oct;60(4 Pt B):4571-5. doi: 10.1103/physreve.60.4571.
9
Randomly Distributed Delayed Communication and Coherent Swarm Patterns.
IEEE Int Conf Robot Autom. 2012. doi: 10.1109/ICRA.2012.6224993.
10
Delay induced swarm pattern bifurcations in mixed reality experiments.
Chaos. 2020 Jul;30(7):073126. doi: 10.1063/1.5142849.

引用本文的文献

1
Swarm shedding in networks of self-propelled agents.
Sci Rep. 2021 Jun 29;11(1):13544. doi: 10.1038/s41598-021-92748-1.
2
Noise Induced Pattern Switching in Randomly Distributed Delayed Swarms.
Proc Am Control Conf. 2013;2013:4587-4591. doi: 10.1109/ACC.2013.6580546.
3
Randomly Distributed Delayed Communication and Coherent Swarm Patterns.
IEEE Int Conf Robot Autom. 2012. doi: 10.1109/ICRA.2012.6224993.
4
Statistical multimoment bifurcations in random-delay coupled swarms.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056202. doi: 10.1103/PhysRevE.86.056202. Epub 2012 Nov 5.

本文引用的文献

1
Swarming in three dimensions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031927. doi: 10.1103/PhysRevE.78.031927. Epub 2008 Sep 30.
2
Delay-induced instabilities in self-propelling swarms.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):035203. doi: 10.1103/PhysRevE.77.035203. Epub 2008 Mar 19.
3
Phase transitions in systems of self-propelled agents and related network models.
Phys Rev Lett. 2007 Mar 2;98(9):095702. doi: 10.1103/PhysRevLett.98.095702.
4
Noise-induced transition from translational to rotational motion of swarms.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 1):051904. doi: 10.1103/PhysRevE.71.051904. Epub 2005 May 6.
5
Random delays and the synchronization of chaotic maps.
Phys Rev Lett. 2005 Apr 8;94(13):134102. doi: 10.1103/PhysRevLett.94.134102.
6
Modeling operon dynamics: the tryptophan and lactose operons as paradigms.
C R Biol. 2004 Mar;327(3):211-24. doi: 10.1016/j.crvi.2003.11.009.
7
Bifurcations in a white-blood-cell production model.
C R Biol. 2004 Mar;327(3):201-10. doi: 10.1016/j.crvi.2003.05.005.
8
Why the lysogenic state of phage lambda is so stable: a mathematical modeling approach.
Biophys J. 2004 Jan;86(1 Pt 1):75-84. doi: 10.1016/S0006-3495(04)74085-0.
9
Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays.
Curr Biol. 2003 Aug 19;13(16):1409-13. doi: 10.1016/s0960-9822(03)00494-9.
10
Sustained oscillations and time delays in gene expression of protein Hes1.
FEBS Lett. 2003 Apr 24;541(1-3):176-7. doi: 10.1016/s0014-5793(03)00279-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验