Suppr超能文献

噬菌体λ的溶原状态为何如此稳定:一种数学建模方法。

Why the lysogenic state of phage lambda is so stable: a mathematical modeling approach.

作者信息

Santillán Moisés, Mackey Michael C

机构信息

Centre for Nonlinear Dynamics, McGill University, H3G 1Y6 Montreal, Quebec, Canada.

出版信息

Biophys J. 2004 Jan;86(1 Pt 1):75-84. doi: 10.1016/S0006-3495(04)74085-0.

Abstract

We develop a mathematical model of the phage lambda lysis/lysogeny switch, taking into account recent experimental evidence demonstrating enhanced cooperativity between the left and right operator regions. Model parameters are estimated from available experimental data. The model is shown to have a single stable steady state for these estimated parameter values, and this steady state corresponds to the lysogenic state. When the CI degradation rate (gammacI) is slightly increased from its normal value (gammacI approximately 0.0 min(-1)), two additional steady states appear (through a saddle-node bifurcation) in addition to the lysogenic state. One of these new steady states is stable and corresponds to the lytic state. The other steady state is an (unstable) saddle node. The coexistence these two globally stable steady states (the lytic and lysogenic states) is maintained with further increases of gammacI until gammacI approximately 0.35 min(-1), when the lysogenic steady state and the saddle node collide and vanish (through a reverse saddle node bifurcation) leaving only the lytic state surviving. These results allow us to understand the high degree of stability of the lysogenic state because, normally, it is the only steady state. Further implications of these results for the stability of the phage lambda switch are discussed, as well as possible experimental tests of the model.

摘要

我们构建了一个噬菌体λ裂解/溶原转换的数学模型,其中考虑了最近的实验证据,该证据表明左右操纵子区域之间的协同作用增强。模型参数是根据现有实验数据估算的。对于这些估算的参数值,该模型显示具有单一稳定稳态,且此稳态对应于溶原状态。当CI降解速率(γcI)从其正常值(γcI约为0.0 min⁻¹)略有增加时,除溶原状态外还会出现另外两个稳态(通过鞍结分岔)。这些新稳态之一是稳定的,对应于裂解状态。另一个稳态是(不稳定的)鞍点。随着γcI进一步增加,这两个全局稳定稳态(裂解和溶原状态)共存,直到γcI约为0.35 min⁻¹时,溶原稳态和鞍点碰撞并消失(通过反向鞍结分岔),仅留下裂解状态。这些结果使我们能够理解溶原状态的高度稳定性,因为通常它是唯一的稳态。我们还讨论了这些结果对噬菌体λ转换稳定性的进一步影响,以及该模型可能的实验测试。

相似文献

1
Why the lysogenic state of phage lambda is so stable: a mathematical modeling approach.
Biophys J. 2004 Jan;86(1 Pt 1):75-84. doi: 10.1016/S0006-3495(04)74085-0.
2
Sensitivity of OR in phage lambda.
Biophys J. 2004 Jan;86(1 Pt 1):58-66. doi: 10.1016/S0006-3495(04)74083-7.
3
Bacteriophage λ RexA and RexB functions assist the transition from lysogeny to lytic growth.
Mol Microbiol. 2021 Oct;116(4):1044-1063. doi: 10.1111/mmi.14792. Epub 2021 Aug 30.
4
Robustness, stability and efficiency of phage lambda genetic switch: dynamical structure analysis.
J Bioinform Comput Biol. 2004 Dec;2(4):785-817. doi: 10.1142/s0219720004000946.
5
A quantitative study of lambda-phage SWITCH and its components.
Biophys J. 2007 Apr 15;92(8):2685-93. doi: 10.1529/biophysj.106.097089. Epub 2007 Jan 26.
6
7
The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation.
J Mol Biol. 1985 Jan 20;181(2):211-30. doi: 10.1016/0022-2836(85)90086-5.
8
Cooperative DNA binding by CI repressor is dispensable in a phage lambda variant.
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17741-6. doi: 10.1073/pnas.0602223104. Epub 2007 Oct 25.
10
DNA looping can enhance lysogenic CI transcription in phage lambda.
Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5827-32. doi: 10.1073/pnas.0705570105. Epub 2008 Apr 7.

引用本文的文献

1
Lytic/Lysogenic Transition as a Life-History Switch.
Virus Evol. 2024 Apr 3;10(1):veae028. doi: 10.1093/ve/veae028. eCollection 2024.
2
Switching off: The phenotypic transition to the uninduced state of the lactose uptake pathway.
Biophys J. 2022 Jan 18;121(2):183-192. doi: 10.1016/j.bpj.2021.12.027. Epub 2021 Dec 23.
3
Inferring initial state of the ancestral network of cellular fate decision: a case study of phage lambda.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4436-4439. doi: 10.1109/EMBC46164.2021.9629880.
4
From Bench to Keyboard and Back Again: A Brief History of Lambda Phage Modeling.
Annu Rev Biophys. 2021 May 6;50:117-134. doi: 10.1146/annurev-biophys-082020-063558.
5
Stochastic modeling of human papillomavirusearly promoter gene regulation.
J Theor Biol. 2020 Feb 7;486:110057. doi: 10.1016/j.jtbi.2019.110057. Epub 2019 Oct 28.
6
Late-Arriving Signals Contribute Less to Cell-Fate Decisions.
Biophys J. 2017 Nov 7;113(9):2110-2120. doi: 10.1016/j.bpj.2017.09.012.
7
Cooperativity leads to temporally-correlated fluctuations in the bacteriophage lambda genetic switch.
Front Plant Sci. 2015 Apr 8;6:214. doi: 10.3389/fpls.2015.00214. eCollection 2015.
8
Revisiting bistability in the lysis/lysogeny circuit of bacteriophage lambda.
PLoS One. 2014 Jun 25;9(6):e100876. doi: 10.1371/journal.pone.0100876. eCollection 2014.
9
Coherent Pattern Prediction in Swarms of Delay-Coupled Agents.
IEEE Trans Robot. 2012 Oct;28(5):1034-1044. doi: 10.1109/tro.2012.2198511.
10
Mechanistically consistent reduced models of synthetic gene networks.
Biophys J. 2013 May 7;104(9):2098-109. doi: 10.1016/j.bpj.2013.03.031.

本文引用的文献

1
Stability puzzles in phage lambda.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):051914. doi: 10.1103/PhysRevE.65.051914. Epub 2002 May 16.
2
Epigenetics as a first exit problem.
Phys Rev Lett. 2002 Jan 28;88(4):048101. doi: 10.1103/PhysRevLett.88.048101. Epub 2002 Jan 8.
6
Bacteriophage lambda: the untold story.
J Mol Biol. 1999 Oct 22;293(2):177-80. doi: 10.1006/jmbi.1999.3137.
7
Robustness of a gene regulatory circuit.
EMBO J. 1999 Aug 2;18(15):4299-307. doi: 10.1093/emboj/18.15.4299.
8
RecA-independent pathways of lambdoid prophage induction in Escherichia coli.
J Bacteriol. 1998 Dec;180(23):6306-15. doi: 10.1128/JB.180.23.6306-6315.1998.
10
Changing the mechanism of transcriptional activation by phage lambda repressor.
Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3691-6. doi: 10.1073/pnas.94.8.3691.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验