Roos Goedele, Fonseca Guerra Célia, Bickelhaupt F Matthias
a General Chemistry , Vrije Universiteit Brussel , Brussels 1050 , Belgium.
J Biomol Struct Dyn. 2015;33(1):93-103. doi: 10.1080/07391102.2013.851034. Epub 2013 Nov 21.
Protein disulfides can adopt a wide variety of conformations, each having different energies. Limited experimental data suggest that disulfides adopting a high energy have an enhanced likelihood for reduction, but the exact nature of this relation is not clear. Using a computational approach, we give insight on the conformational dependence of the redox behavior of the disulfide bond, which relates structure to reactivity. The relative energy of different conformations of the diethyl disulfide model system correlates with the disulfide/thiol redox potential E°. Insight in the calculated redox potentials is obtained via quantitative molecular orbital theory, and via the decomposition of E° into a vertical electron affinity and a subsequent reorganization term. We have identified the determinants of the disulfide conformational energies and characterized the barrier to rotation around the disulfide bond. Our findings on the diethyl disulfide model system can be transferred to examples from the Protein Data Base. In conclusion, strained disulfide conformations with a high conformational energy have a large tendency to be reduced. Upon reduction, unfavorable interactions are released. This explains why reorganization effects and not a higher tendency to accept electrons account for the high reduction potential of high-energy disulfides.
蛋白质二硫键可以呈现多种构象,每种构象具有不同的能量。有限的实验数据表明,具有高能量的二硫键被还原的可能性增加,但这种关系的确切性质尚不清楚。我们采用计算方法,深入研究了二硫键氧化还原行为的构象依赖性,该依赖性将结构与反应性联系起来。二乙二硫模型系统不同构象的相对能量与二硫键/硫醇氧化还原电位E°相关。通过定量分子轨道理论,并将E°分解为垂直电子亲和能和随后的重组项,从而深入了解计算出的氧化还原电位。我们确定了二硫键构象能量的决定因素,并表征了围绕二硫键旋转的势垒。我们在二乙二硫模型系统上的发现可以应用于蛋白质数据库中的实例。总之,具有高构象能量的应变二硫键构象具有很大的被还原的倾向。还原后,不利的相互作用被释放。这解释了为什么重组效应而非更高的接受电子倾向导致了高能量二硫键的高还原电位。