Department of Chemical and Biomolecular Engineering, National University of Singapore , 10 Kent Ridge Crescsent, Singapore 119260, Singapore.
ACS Nano. 2013 Dec 23;7(12):10870-8. doi: 10.1021/nn404311x. Epub 2013 Nov 25.
TiO2 nanoparticles aggregated into a regular ball-in-ball morphology were synthesized by hydrothermal processing and converted to carbon-encapsulated F-doped Li4Ti5O12 (LTO) composites (C-FLTO) by solid state lithiation at high temperatures. Through the careful control of the amount of carbon precursor (D(+)-glucose monohydrate) used in the process, LTO encapsulated with a continuous layer of nanoscale carbon was formed. The carbon encapsulation served a dual function: preserving the ball-in-ball morphology during the transformation from TiO2 to LTO and decreasing the external electron transport resistance. The fluoride doping of LTO not only increased the electron conductivity of LTO through trivalent titanium (Ti(3+)) generation, but also increased the robustness of the structure to repeated lithiation and delithiation. The best-performing composite, C-FLTO-2, therefore delivered a very satisfying performance for a LTO anode: a high charge capacity of ∼158 mA h g(-1) at the 1 C rate with negligible capacity fading for 200 cycles and an extremely high rate performance up to 140 C.
TiO2 纳米颗粒聚集形成规则的球中球形态,通过水热处理合成,并通过高温固态锂化转化为碳包覆 F 掺杂 Li4Ti5O12(LTO)复合材料(C-FLTO)。通过仔细控制过程中使用的碳前体(D(+)-葡萄糖一水合物)的量,形成了用纳米级碳连续层包覆的 LTO。碳包覆具有双重功能:在 TiO2 转化为 LTO 的过程中保持球中球形态,并降低外部电子传输电阻。LTO 的氟掺杂不仅通过产生三价钛(Ti(3+))提高了 LTO 的电子电导率,而且提高了结构对反复锂化和脱锂的稳定性。因此,表现最佳的复合材料 C-FLTO-2 为 LTO 阳极提供了非常令人满意的性能:在 1 C 倍率下具有约 158 mA h g(-1)的高充电容量,200 次循环后容量衰减可忽略不计,高达 140 C 的极高倍率性能。