Suppr超能文献

精疲力竭?代偿储备指数。

Running on empty? The compensatory reserve index.

机构信息

From the Department of Surgery (S.L.M.), University of Colorado, School of Medicine, Aurora; and Flashback Technologies Inc. (S.L.M., J.M., G.Z.G.), Boulder, Colorado; and US Army Institute of Surgical Research (V.A.C.), JBSA Fort Sam Houston, San Antonio, Texas.

出版信息

J Trauma Acute Care Surg. 2013 Dec;75(6):1053-9. doi: 10.1097/TA.0b013e3182aa811a.

Abstract

BACKGROUND

Hemorrhage is a leading cause of traumatic death. We hypothesized that state-of-the-art feature extraction and machine learning techniques could be used to discover, detect, and continuously trend beat-to-beat changes in arterial pulse waveforms associated with the progression to hemodynamic decompensation.

METHODS

We exposed 184 healthy humans to progressive central hypovolemia using lower-body negative pressure to the point of hemodynamic decompensation (systolic blood pressure > 80 mm Hg with or without bradycardia). Initial models were developed using continuous noninvasive blood pressure waveform data. The resulting algorithm calculates a compensatory reserve index (CRI), where 1 represents supine normovolemia and 0 represents the circulatory volume at which hemodynamic decompensation occurs (i.e., "running on empty"). Values between 1 and 0 indicate the proportion of reserve remaining before hemodynamic decompensation-much like the fuel gauge of a car indicates the amount of fuel remaining in the tank. A CRI estimate is produced after the first 30 heart beats, followed by a new CRI estimate after each subsequent beat.

RESULTS

The CRI model with a 30-beat window has an absolute difference between actual and expected time to decompensation of 0.1, with a SD of 0.09. The model distinguishes individuals with low tolerance to reduced central blood volume (i.e., those most likely to develop early shock) from those with high tolerance and are able to estimate how near or far an individual may be from hemodynamic decompensation.

CONCLUSION

Machine modeling can quickly and accurately detect and trend central blood volume reduction in real time during the compensatory phase of hemorrhage as well as estimate when an individual is "running on empty" and will decompensate (CRI, 0), well in advance of meaningful changes in traditional vital signs.

摘要

背景

出血是创伤性死亡的主要原因。我们假设,最先进的特征提取和机器学习技术可用于发现、检测和连续趋势动脉脉搏波形的变化与血流动力学失代偿的进展相关。

方法

我们通过使用下体负压使 184 名健康人暴露于渐进性中心低血容量,直至发生血流动力学失代偿(收缩压> 80mmHg 伴有或不伴有心动过缓)。初始模型是使用连续无创血压波形数据开发的。所得算法计算补偿储备指数(CRI),其中 1 代表仰卧位正常血容量,0 代表发生血流动力学失代偿时的循环血量(即“空转”)。1 到 0 之间的值表示血流动力学失代偿前的储备比例-就像汽车的燃油表指示油箱中剩余的燃油量一样。在最初的 30 次心跳后产生 CRI 估计值,然后在随后的每次心跳后产生新的 CRI 估计值。

结果

具有 30 次心跳窗口的 CRI 模型在实际和预期失代偿时间之间的绝对差值为 0.1,标准差为 0.09。该模型区分了对中心血容量减少的低耐受性个体(即最有可能早期休克的个体)与高耐受性个体,并能够估计个体离血流动力学失代偿有多近或多远。

结论

机器模型可以在出血代偿阶段快速准确地实时检测和趋势中心血容量减少,并且可以估计个体何时“空转”(CRI,0)并失代偿,远早于传统生命体征发生有意义的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验