Max Planck Institute for Dynamics and Self Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany.
Int J Mol Sci. 2013 Nov 19;14(11):22826-44. doi: 10.3390/ijms141122826.
Flow of molecularly ordered fluids, like liquid crystals, is inherently coupled with the average local orientation of the molecules, or the director. The anisotropic coupling-typically absent in isotropic fluids-bestows unique functionalities to the flowing matrix. In this work, we harness this anisotropy to pattern different pathways to tunable fluidic resistance within microfluidic devices. We use a nematic liquid crystalline material flowing in microchannels to demonstrate passive and active modulation of the flow resistance. While appropriate surface anchoring conditions-which imprint distinct fluidic resistances within microchannels under similar hydrodynamic parameters-act as passive cues, an external field, e.g., temperature, is used to actively modulate the flow resistance in the microfluidic device. We apply this simple concept to fabricate basic fluidic circuits, which can be hierarchically extended to create complex resistance networks, without any additional design or morphological patterning of the microchannels.
分子有序流体(如液晶)的流动本质上与分子的平均局部取向(即指向矢)相关联。各向异性的耦合——在各向同性流体中通常不存在——赋予了流动基质独特的功能。在这项工作中,我们利用这种各向异性在微流控器件内形成不同的、可调的流阻通道。我们使用在微通道中流动的向列液晶材料来演示流阻的被动和主动调节。适当的表面锚定条件(在相似的流体力学参数下,在微通道内产生不同的流阻)作为被动线索,而外部场(例如温度)则用于主动调节微流控器件中的流阻。我们应用这个简单的概念来制造基本的流体电路,这些电路可以通过分层扩展来创建复杂的电阻网络,而无需对微通道进行任何额外的设计或形态图案化。