School of Chemical Engineering & Materials Science, Chung-Ang University, Seoul 156-756, Korea.
Phys Chem Chem Phys. 2014 Jan 7;16(1):351-61. doi: 10.1039/c3cp53488j.
Herein, 3D nanohybrid architectures consisting of MnO2 nanoneedles, carbon nanotubes (CNTs) and graphene sheets are fabricated. Nanostructured ternary hybrid papers in which MnO2 nanoneedles formed on the outermost graphene layer and CNTs intercalated between graphene layers by using the amide bonds are fabricated using the direct paper dipping method. The intercalated CNTs can separate the graphene layers and thus create the effective surface area which is associated with large electrochemically active sites as well as form the electronic conductive channel inside the nanohybrid paper. Moreover, the homogeneous dispersion of nanometer-thick MnO2 on the outermost graphene layer can maximize the surface area which can form pores for ion-buffering reservoirs to improve the diffusion rate of electrolyte ions and enable convenient participation in the pseudo-capacitive reaction. These nanostructured ternary hybrid papers exhibit enhanced specific capacitances compared with graphene-only or graphene-CNT papers. The proposed nanohybrid architectures are expected to lay the foundation for the design and fabrication of high-performance electrodes.
在此,制备了由 MnO2 纳米针、碳纳米管(CNT)和石墨烯片组成的 3D 纳米杂化结构。使用酰胺键,通过直接纸张浸渍法制备了在最外层石墨烯层上形成 MnO2 纳米针且 CNT 插层在石墨烯层之间的纳米结构三元杂化纸。插层 CNT 可以分离石墨烯层,从而创造出与大的电化学活性位点相关的有效表面积,并在纳米杂化纸内形成电子导电通道。此外,均匀分散在最外层石墨烯上的纳米厚度 MnO2 可以最大化表面积,从而形成用于离子缓冲储层的孔,以提高电解质离子的扩散率,并便于参与赝电容反应。与仅石墨烯或石墨烯-CNT 纸相比,这些纳米结构三元杂化纸表现出更高的比电容。所提出的纳米杂化结构有望为高性能电极的设计和制造奠定基础。