World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.
Small. 2013 Jan 28;9(2):248-54. doi: 10.1002/smll.201201754. Epub 2012 Oct 4.
Herein, 3D nanohybrid architectures consisting of MnO(x) nanocrystals, carbon nanofibers (CNFs), and graphene sheets are fabricated. MnO(x) -decorated CNFs (MCNFs) with diameters of about 50 nm are readily obtained via single-nozzle co-electrospinning, followed by heat treatment. The MCNFs are then intercalated between graphene sheets, yielding the ternary nanohybrid MCNF/reduced graphene oxide (RGO). This straightforward synthesis process readily affords product on a scale of tens of grams. The ultrathin CNFs, which might be a promising alternative to carbon nanotubes (CNTs), overcome the low electrical conductivity of the excellent pseudocapacitive component, MnO(x) . Furthermore, the graphene sheets separated by the MCNFs boost the electrochemical performance of the nanohybrid electrodes. These nanohybrid electrodes exhibit enhanced specific capacitances compared with a sheet electrode fabricated of MCNF-only or RGO-only. Evidently, the RGO sheet acts as a conductive channel inside the nanohybrid, while the intercalated MCNFs increase the efficiency of the ion and charge transfer in the nanohybrid. The proposed nanohybrid architectures are expected to lay the foundation for the design and fabrication of high-performance electrodes.
本文构建了由 MnO(x) 纳米晶体、碳纳米纤维(CNF)和石墨烯片组成的 3D 纳米杂化结构。通过单喷嘴共电纺丝,然后进行热处理,很容易获得直径约为 50nm 的 MnO(x) 修饰的 CNF(MCNF)。然后,MCNF 被插层在石墨烯片之间,得到三元纳米杂化 MCNF/还原氧化石墨烯(RGO)。这种简单的合成工艺很容易在几十克的规模上得到产物。超薄的 CNF 可能是碳纳米管(CNT)的一种有前途的替代品,克服了优异的赝电容组件 MnO(x) 的低导电性。此外,由 MCNF 隔开的石墨烯片提高了纳米杂化电极的电化学性能。与仅由 MCNF 或 RGO 制成的片电极相比,这些纳米杂化电极表现出增强的比电容。显然,RGO 片在纳米杂化内部充当导电通道,而插层的 MCNF 提高了纳米杂化中离子和电荷转移的效率。所提出的纳米杂化结构有望为高性能电极的设计和制造奠定基础。