LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität, Marburg, Germany.
Genome Biol Evol. 2013;5(12):2318-29. doi: 10.1093/gbe/evt181.
Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force.
质体和线粒体基因组经历了平行进化,以编码相同的功能基因集。这些基因编码电子传递链在各自的生物能膜中的保守蛋白成分,以及表达它们的核糖体基因。细胞器基因组进化的这种高度趋同的方面部分可以用氧化还原调节假说来解释,该假说预测编码光合作用或呼吸作用的生物能膜蛋白的基因在质体或线粒体中有单独的位置。在这里,我们表明细胞器基因组进化中的趋同程度远远超过了先前的认识,因为核糖体蛋白的同一套基因被质体和线粒体基因组独立保留。一个迄今为止尚未被认识的选择性压力保留了两个细胞器中相同的核糖体蛋白基因。在大肠杆菌核糖体组装图谱上,保留的蛋白质涉及 30S 和 50S 核糖体亚基的组装和初始 rRNA 结合。我们认为核糖体组装施加了功能约束,这些约束决定了核糖体蛋白编码基因在细胞器中的保留。这些约束次于电子传递链成分的氧化还原调节,电子传递链成分首先将核糖体锚定在细胞器基因组上。随着细胞器基因组的减少,rRNA 也变得更小。当 rRNA 小于大约 1300 个核苷酸(16S rRNA)和 2100 个核苷酸(26S rRNA)的大小阈值时,所有核糖体蛋白编码基因都会从细胞器中丢失,而电子传递链成分仍然作为细胞器编码,只要细胞器利用氧化还原化学产生质子动力。