Suppr超能文献

光合作用基因的转录调控:质体基因组功能中进化保守的调控机制。

Transcriptional control of photosynthesis genes: the evolutionarily conserved regulatory mechanism in plastid genome function.

出版信息

Genome Biol Evol. 2010;2:888-96. doi: 10.1093/gbe/evq073. Epub 2010 Nov 11.

Abstract

Chloroplast sensor kinase (CSK) is a bacterial-type sensor histidine kinase found in chloroplasts--photosynthetic plastids--in eukaryotic plants and algae. Using a yeast two-hybrid screen, we demonstrate recognition and interactions between: CSK, plastid transcription kinase (PTK), and a bacterial-type RNA polymerase sigma factor-1 (SIG-1). CSK interacts with itself, with SIG-1, and with PTK. PTK also interacts directly with SIG-1. PTK has previously been shown to catalyze phosphorylation of plastid-encoded RNA polymerase (PEP), suppressing plastid transcription nonspecifically. Phospho-PTK is inactive as a PEP kinase. Here, we propose that phospho-CSK acts as a PTK kinase, releasing PTK repression of chloroplast transcription, while CSK also acts as a SIG-1 kinase, blocking transcription specifically at the gene promoter of chloroplast photosystem I. Oxidation of the photosynthetic electron carrier plastoquinone triggers phosphorylation of CSK, inducing chloroplast photosystem II while suppressing photosystem I. CSK places photosystem gene transcription under the control of photosynthetic electron transport. This redox signaling pathway has its origin in cyanobacteria, photosynthetic prokaryotes from which chloroplasts evolved. The persistence of this mechanism in cytoplasmic organelles of photosynthetic eukaryotes is in precise agreement with the CoRR hypothesis for the function of organellar genomes: the plastid genome and its primary gene products are Co-located for Redox Regulation. Genes are retained in plastids primarily in order for their expression to be subject to this rapid and robust redox regulatory transcriptional control mechanism, whereas plastid genes also encode genetic system components, such as some ribosomal proteins and RNAs, that exist in order to support this primary, redox regulatory control of photosynthesis genes. Plastid genome function permits adaptation of the photosynthetic apparatus to changing environmental conditions of light quantity and quality.

摘要

叶绿体传感器激酶(CSK)是一种在真核植物和藻类的叶绿体(光合质体)中发现的细菌型传感器组氨酸激酶。通过酵母双杂交筛选,我们证明了 CSK、质体转录激酶(PTK)和细菌型 RNA 聚合酶 sigma 因子-1(SIG-1)之间的识别和相互作用。CSK 与自身、SIG-1 和 PTK 相互作用。PTK 先前已被证明可以催化质体编码 RNA 聚合酶(PEP)的磷酸化,非特异性地抑制质体转录。磷酸化 PTK 作为 PEP 激酶失活。在这里,我们提出磷酸化 CSK 作为 PTK 激酶起作用,释放 PTK 对叶绿体转录的抑制,而 CSK 也作为 SIG-1 激酶起作用,特异性地阻止叶绿体光系统 I 基因启动子的转录。光合电子载体质醌的氧化触发 CSK 的磷酸化,诱导叶绿体光系统 II,同时抑制光系统 I。CSK 将光系统基因转录置于光合作用电子传递的控制之下。这种氧化还原信号通路起源于蓝细菌,即叶绿体从其进化而来的光合原核生物。这种机制在光合真核生物的细胞质细胞器中的存在与细胞器基因组功能的 CoRR 假说完全一致:质体基因组及其主要基因产物为氧化还原调节而共定位。基因主要保留在质体中,以便其表达受到这种快速而强大的氧化还原调节转录控制机制的影响,而质体基因还编码遗传系统组件,例如一些核糖体蛋白和 RNA,它们的存在是为了支持这种对光合作用基因的主要氧化还原调节控制。质体基因组的功能允许光合装置适应光量和质量不断变化的环境条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6be1/3012001/b58479d5c0d1/gbeevq073f01_3c.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验