Suppr超能文献

通过均方误差确定的体内光谱基线的平滑度。

Smoothness of in vivo spectral baseline determined by mean-square error.

作者信息

Zhang Yan, Shen Jun

机构信息

MR Spectroscopy Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Magn Reson Med. 2014 Oct;72(4):913-22. doi: 10.1002/mrm.25013. Epub 2013 Nov 20.

Abstract

PURPOSE

A nonparametric smooth line is usually added to the spectral model to account for background signals in vivo magnetic resonance spectroscopy (MRS). The assumed smoothness of the baseline significantly influences quantitative spectral fitting. In this paper, a method is proposed to minimize baseline influences on the estimated spectral parameters.

METHODS

The nonparametric baseline function with a given smoothness was treated as a function of spectral parameters. Its uncertainty was measured by root-mean-square error (RMSE). The proposed method was demonstrated with a simulated spectrum and in vivo spectra of both short echo time and averaged echo times. The estimated in vivo baselines were compared with the metabolite-nulled spectra and the LCModel-estimated baselines. The accuracies of estimated baseline and metabolite concentrations were further verified via cross-validation.

RESULTS

An optimal smoothness condition was found that led to the minimal baseline RMSE. In this condition, the best fit was balanced against minimal baseline influences on metabolite concentration estimates.

CONCLUSION

Baseline RMSE can be used to indicate estimated baseline uncertainties and serve as the criterion for determining the baseline smoothness of in vivo MRS.

摘要

目的

在活体磁共振波谱(MRS)中,通常会在光谱模型中添加一条非参数平滑线来解释背景信号。基线的假定平滑度会显著影响定量光谱拟合。本文提出了一种方法,以尽量减少基线对估计光谱参数的影响。

方法

将具有给定平滑度的非参数基线函数视为光谱参数的函数。其不确定性通过均方根误差(RMSE)来衡量。该方法通过模拟光谱以及短回波时间和平均回波时间的活体光谱进行了验证。将估计的活体基线与代谢物归零光谱和LCModel估计的基线进行了比较。通过交叉验证进一步验证了估计基线和代谢物浓度的准确性。

结果

发现了一个导致基线RMSE最小的最佳平滑度条件。在此条件下,最佳拟合与对代谢物浓度估计的最小基线影响达到平衡。

结论

基线RMSE可用于指示估计的基线不确定性,并作为确定活体MRS基线平滑度的标准。

相似文献

1
Smoothness of in vivo spectral baseline determined by mean-square error.
Magn Reson Med. 2014 Oct;72(4):913-22. doi: 10.1002/mrm.25013. Epub 2013 Nov 20.
2
Error images for spectroscopic imaging by LCModel using Cramer-Rao bounds.
MAGMA. 2006 Feb;19(1):1-14. doi: 10.1007/s10334-005-0018-7. Epub 2006 Jan 17.
4
The trouble with quality filtering based on relative Cramér-Rao lower bounds.
Magn Reson Med. 2016 Jan;75(1):15-8. doi: 10.1002/mrm.25568. Epub 2015 Mar 6.
6
Effects of noise and linewidth on in vivo analysis of glutamate at 3 T.
J Magn Reson. 2020 May;314:106732. doi: 10.1016/j.jmr.2020.106732. Epub 2020 Apr 13.
7
ProFit-1D-A 1D fitting software and open-source validation data sets.
Magn Reson Med. 2021 Dec;86(6):2910-2929. doi: 10.1002/mrm.28941. Epub 2021 Aug 13.
8
Results and interpretation of a fitting challenge for MR spectroscopy set up by the MRS study group of ISMRM.
Magn Reson Med. 2022 Jan;87(1):11-32. doi: 10.1002/mrm.28942. Epub 2021 Aug 2.

引用本文的文献

1
Quantification of spatially localized MRS by a novel deep learning approach without spectral fitting.
Magn Reson Med. 2023 Oct;90(4):1282-1296. doi: 10.1002/mrm.29711. Epub 2023 May 15.
3
Monte Carlo study of metabolite correlations originating from spectral overlap.
J Magn Reson. 2022 Aug;341:107257. doi: 10.1016/j.jmr.2022.107257. Epub 2022 Jun 15.
5
Separation of Metabolites and Macromolecules for Short-TE H-MRSI Using Learned Component-Specific Representations.
IEEE Trans Med Imaging. 2021 Apr;40(4):1157-1167. doi: 10.1109/TMI.2020.3048933. Epub 2021 Apr 1.
7
Effects of noise and linewidth on in vivo analysis of glutamate at 3 T.
J Magn Reson. 2020 May;314:106732. doi: 10.1016/j.jmr.2020.106732. Epub 2020 Apr 13.
9
High-resolution H-MRSI of the brain using short-TE SPICE.
Magn Reson Med. 2017 Feb;77(2):467-479. doi: 10.1002/mrm.26130. Epub 2016 Feb 2.
10
Simultaneous quantification of glutamate and glutamine by J-modulated spectroscopy at 3 Tesla.
Magn Reson Med. 2016 Sep;76(3):725-32. doi: 10.1002/mrm.25922. Epub 2015 Sep 12.

本文引用的文献

1
Soft constraints in nonlinear spectral fitting with regularized lineshape deconvolution.
Magn Reson Med. 2013 Apr;69(4):912-9. doi: 10.1002/mrm.24337. Epub 2012 May 22.
5
Brain metabolite proton T2 mapping at 3.0 T in relapsing-remitting multiple sclerosis.
Radiology. 2010 Mar;254(3):858-66. doi: 10.1148/radiol.09091015.
9
Time-domain semi-parametric estimation based on a metabolite basis set.
NMR Biomed. 2005 Feb;18(1):1-13. doi: 10.1002/nbm.895.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验