Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore.
Magn Reson Med. 2012 May;67(5):1195-202. doi: 10.1002/mrm.23102. Epub 2011 Aug 19.
Robust spectral analysis of magnetic resonance spectroscopy data frequently uses a spectral model with prior metabolite signal information within a nonlinear least squares optimization algorithm. Starting values for the spectral model greatly influence the final results. Short echo time magnetic resonance spectroscopy contains broad signals that overlap with metabolite signals, complicating the estimation of starting values. We describe a method for more robust initial value estimation using a filter to attenuate short T(2) signal contributions (e.g., macromolecules or residual lipids). The method attenuates signals by truncating early points in the data set. Metabolite peak estimation is simplified by the removal of broad, short T(2) signals, and corrections for metabolite signal truncation are described. Short echo time simulated Monte Carlo data and in vivo data were used to validate the method. Areas for metabolite signals in the Monte Carlo data with singlet (N-acetylaspartate, creatine, choline) and singlet-like (myo-inositol) resonances were estimated within 10% of actual value for various metabolite line widths, signal-to-noise ratios, and underlying broad signal contributions. Initial value estimates of in vivo magnetic resonance spectroscopy data were within 14% of metabolite area ratios relative to the creatine peak fitted using established magnetic resonance spectroscopy spectral analysis software.
磁共振波谱数据分析中常用的一种方法是在非线性最小二乘优化算法中使用具有先前代谢物信号信息的谱模型。谱模型的起始值会极大地影响最终结果。短回波时间磁共振波谱包含与代谢物信号重叠的宽信号,这使得起始值的估计变得复杂。我们描述了一种使用滤波器衰减短 T2 信号贡献(例如,大分子或残留脂质)的更稳健的初始值估计方法。该方法通过截断数据集的早期点来衰减信号。通过去除宽的短 T2 信号简化了代谢物峰的估计,并描述了代谢物信号截断的校正方法。使用模拟的短回波时间蒙特卡罗数据和体内数据验证了该方法。对于具有单峰(N-乙酰天冬氨酸、肌酸、胆碱)和类似单峰(肌醇)共振的蒙特卡罗数据中代谢物信号的区域,在各种代谢物线宽、信噪比和基础宽信号贡献下,估计值与实际值的偏差在 10%以内。与使用已建立的磁共振波谱光谱分析软件拟合的肌酸峰相比,体内磁共振波谱数据的初始值估计值与代谢物面积比的偏差在 14%以内。