Suppr超能文献

基于 CT 的图像引导放疗中治疗非小细胞肺癌肿瘤体积变化的建模:观察到的模式和临床意义。

Modeling of non-small cell lung cancer volume changes during CT-based image guided radiotherapy: patterns observed and clinical implications.

机构信息

Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA.

出版信息

Comput Math Methods Med. 2013;2013:637181. doi: 10.1155/2013/637181. Epub 2013 Oct 24.

Abstract

Background. To characterize the lung tumor volume response during conventional and hypofractionated radiotherapy (RT) based on diagnostic quality CT images prior to each treatment fraction. Methods. Out of 26 consecutive patients who had received CT-on-rails IGRT to the lung from 2004 to 2008, 18 were selected because they had lung lesions that could be easily distinguished. The time course of the tumor volume for each patient was individually analyzed using a computer program. Results. The model fits of group L (conventional fractionation) patients were very close to experimental data, with a median Δ% (average percent difference between data and fit) of 5.1% (range 3.5-10.2%). The fits obtained in group S (hypofractionation) patients were generally good, with a median Δ% of 7.2% (range 3.7-23.9%) for the best fitting model. Four types of tumor responses were observed-Type A: "high" kill and "slow" dying rate; Type B: "high" kill and "fast" dying rate; Type C: "low" kill and "slow" dying rate; and Type D: "low" kill and "fast" dying rate. Conclusions. The models used in this study performed well in fitting the available dataset. The models provided useful insights into the possible underlying mechanisms responsible for the RT tumor volume response.

摘要

背景

在常规和适形放疗(RT)之前,基于每个治疗分次的诊断质量 CT 图像,对肺肿瘤体积的反应进行特征描述。

方法

在 2004 年至 2008 年期间,对 26 例连续接受 CT-on-rails IGRT 治疗的患者进行了研究,其中 18 例患者选择了具有易于区分的肺病变的患者。使用计算机程序对每位患者的肿瘤体积时间曲线进行了个体分析。

结果

常规分次治疗组(group L)的模型拟合非常接近实验数据,中位数 Δ%(数据与拟合之间的平均百分比差异)为 5.1%(范围为 3.5-10.2%)。适形分次治疗组(group S)的拟合结果通常较好,最佳拟合模型的中位数 Δ%为 7.2%(范围为 3.7-23.9%)。观察到四种肿瘤反应类型:A 型:“高”杀伤和“慢”死亡率;B 型:“高”杀伤和“快”死亡率;C 型:“低”杀伤和“慢”死亡率;和 D 型:“低”杀伤和“快”死亡率。

结论

本研究中使用的模型在拟合可用数据集方面表现良好。这些模型为理解 RT 肿瘤体积反应的潜在机制提供了有用的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8508/3821906/ab1b288d886d/CMMM2013-637181.001.jpg

相似文献

3
Tolerance of organs at risk in small-volume, hypofractionated, image-guided radiotherapy for primary and metastatic lung cancers.
Int J Radiat Oncol Biol Phys. 2003 May 1;56(1):126-35. doi: 10.1016/s0360-3016(03)00095-6.
5
Cone-beam CT-guided radiotherapy in the management of lung cancer: Diagnostic and therapeutic value.
Strahlenther Onkol. 2016 Feb;192(2):83-91. doi: 10.1007/s00066-015-0927-y. Epub 2015 Dec 2.
6
10
Incidence and evolution of imaging changes on cone-beam CT during and after radical radiotherapy for non-small cell lung cancer.
Radiother Oncol. 2019 Mar;132:121-126. doi: 10.1016/j.radonc.2018.12.009. Epub 2018 Dec 31.

引用本文的文献

1
Mathematical model of tumor volume dynamics in mice treated with electrochemotherapy.
Med Biol Eng Comput. 2017 Jul;55(7):1085-1096. doi: 10.1007/s11517-016-1562-1. Epub 2016 Sep 22.

本文引用的文献

1
Accumulation of neutral mutations in growing cell colonies with competition.
J Theor Biol. 2012 Dec 7;314:84-94. doi: 10.1016/j.jtbi.2012.08.015. Epub 2012 Aug 23.
2
A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy.
Clin Cancer Res. 2012 Sep 15;18(18):5071-80. doi: 10.1158/1078-0432.CCR-12-0084. Epub 2012 Jul 3.
3
Evolution of resistance to targeted anti-cancer therapies during continuous and pulsed administration strategies.
PLoS Comput Biol. 2009 Nov;5(11):e1000557. doi: 10.1371/journal.pcbi.1000557. Epub 2009 Nov 6.
4
Radiological-pathological correlation in intratumoural tissue components of solid lung tumours.
Radiol Med. 2009 Mar;114(2):173-89. doi: 10.1007/s11547-008-0354-6. Epub 2008 Dec 11.
5
Quantification of tumor volume changes during radiotherapy for non-small-cell lung cancer.
Int J Radiat Oncol Biol Phys. 2009 Jun 1;74(2):341-8. doi: 10.1016/j.ijrobp.2008.07.063. Epub 2008 Nov 27.
7
Cell killing and resistance in pre-operative breast cancer chemotherapy.
BMC Cancer. 2008 Jul 21;8:201. doi: 10.1186/1471-2407-8-201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验