Suppr超能文献

一个关于人类肿瘤细胞群体的广义年龄和阶段结构模型,该模型既包括未受干扰的情况,也包括暴露于一系列癌症治疗的情况。

A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies.

作者信息

Basse Britta, Ubezio Paolo

机构信息

Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.

出版信息

Bull Math Biol. 2007 Jul;69(5):1673-90. doi: 10.1007/s11538-006-9185-6. Epub 2007 Mar 15.

Abstract

We develop a general mathematical model for a population of cells differentiated by their position within the cell division cycle. A system of partial differential equations governs the kinetics of cell densities in certain phases of the cell division cycle dependent on time t (hours) and an age-like variable tau (hours) describing the time since arrival in a particular phase of the cell division cycle. Transition rate functions control the transfer of cells between phases. We first obtain a theoretical solution on the infinite domain -infinity < t < infinity. We then assume that age distributions at time t=0 are known and write our solution in terms of these age distributions on t=0. In practice, of course, these age distributions are unknown. All is not lost, however, because a cell line before treatment usually lies in a state of asynchronous balanced growth where the proportion of cells in each phase of the cell cycle remain constant. We assume that an unperturbed cell line has four distinct phases and that the rate of transition between phases is constant within a short period of observation ('short' relative to the whole history of the tumour growth) and we show that under certain conditions, this is equivalent to exponential growth or decline. We can then gain expressions for the age distributions. So, in short, our approach is to assume that we have an unperturbed cell line on t </= 0, and then, at t=0 the cell line is exposed to cancer therapy. This corresponds to a change in the transition rate functions and perhaps incorporation of additional phases of the cell cycle. We discuss a number of these cancer therapies and applications of the model.

摘要

我们针对一群根据其在细胞分裂周期中的位置而分化的细胞,开发了一个通用的数学模型。一个偏微分方程组控制着细胞分裂周期特定阶段中细胞密度的动力学,该动力学取决于时间t(小时)以及一个类似年龄的变量τ(小时),τ描述了细胞进入细胞分裂周期特定阶段后的时间。转换速率函数控制细胞在各阶段之间的转移。我们首先在无限域 -∞ < t < ∞ 上获得理论解。然后我们假设在时间t = 0时的年龄分布是已知的,并根据这些在t = 0时的年龄分布来写出我们的解。当然,在实际中,这些年龄分布是未知的。然而,并非一切都无法解决,因为在治疗前的细胞系通常处于异步平衡生长状态,其中细胞周期各阶段的细胞比例保持恒定。我们假设一个未受干扰的细胞系有四个不同的阶段,并且在短时间观察内(“短”相对于肿瘤生长的整个历史而言)各阶段之间的转换速率是恒定的,并且我们表明在某些条件下,这等同于指数增长或衰退。然后我们可以得到年龄分布的表达式。所以,简而言之,我们的方法是假设在t≤0时我们有一个未受干扰的细胞系,然后,在t = 0时该细胞系接受癌症治疗。这对应于转换速率函数的变化,并且可能包含细胞周期的其他阶段。我们讨论了一些这样的癌症治疗方法以及该模型的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验