Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany.
Institute of Applied Physics (APH) and Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany.
Biochimie. 2014 Mar;98:127-34. doi: 10.1016/j.biochi.2013.10.022. Epub 2013 Nov 18.
Mutations of several genes encoding peroxisomal proteins have been associated with human diseases. Some of these display specific white matter abnormalities in the brain, although the affected proteins are ubiquitously expressed. To better understand the etiology of peroxisomal myelin diseases, we aimed to label these organelles in vivo and in a cell type specific fashion. We had previously shown that in oligodendrocytes and Schwann cells numerous peroxisomes reside in the cytoplasmic channels of "non-compacted" myelin. These organelles are smaller and biochemically distinct from non-myelin peroxisomes. Targeting peroxisomal functions in various cell types of the brain has demonstrated that oligodendroglial peroxisomes are specifically important for long-term integrity of the CNS. To visualize myelin peroxisomes in intact cells and tissues by live imaging, we have generated a novel line of transgenic mice for the expression of fluorescently tagged peroxisomes specifically in myelinating glia. This was achieved by modifying the gene for a photoconvertible mEos2 with a peroxisomal targeting signal type 1 (PTS1) and generating a fusion gene with the myelin-specific Cnp1 promoter. In the brain of resulting transgenic mice, peroxisomes are selectively labeled in oligodendrocytes. In this novel genetic tool, photoconversion of single peroxisomes from green to red fluorescence can be used to monitor the fate of single organelles and to determine the dynamics of PTS1-mediated protein import in the context of myelin diseases that affect peroxisomal functions.
几种编码过氧化物酶体蛋白的基因突变与人类疾病有关。其中一些在大脑中表现出特定的白质异常,尽管受影响的蛋白广泛表达。为了更好地理解过氧化物酶体髓鞘疾病的病因,我们旨在以体内和细胞类型特异性的方式标记这些细胞器。我们之前曾表明,在少突胶质细胞和施万细胞中,许多过氧化物酶体位于“非致密”髓鞘的细胞质通道中。这些细胞器较小,生化特性与非髓鞘过氧化物体不同。针对大脑中各种细胞类型的过氧化物酶体功能,已经证明少突胶质细胞过氧化物体对中枢神经系统的长期完整性具有特异性重要性。为了通过活细胞成像在完整细胞和组织中可视化髓鞘过氧化物体,我们生成了一种新型的转基因小鼠,用于在髓鞘形成胶质细胞中特异性表达荧光标记的过氧化物体。这是通过修饰具有过氧化物酶体靶向信号类型 1(PTS1)的光可转换 mEos2 的基因并与髓鞘特异性 Cnp1 启动子生成融合基因来实现的。在产生的转基因小鼠的大脑中,过氧化物体在少突胶质细胞中被选择性标记。在这种新型遗传工具中,单个过氧化物体从绿色到红色荧光的光转换可用于监测单个细胞器的命运,并确定影响过氧化物酶体功能的 PTS1 介导的蛋白质导入的动力学在影响过氧化物体功能的髓鞘疾病的背景下。