Suppr超能文献

使用动量表示法描述散射和衍射。

Scattering and diffraction described using the momentum representation.

机构信息

Division of Physical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden.

出版信息

Adv Colloid Interface Sci. 2014 Mar;205:105-12. doi: 10.1016/j.cis.2013.10.025. Epub 2013 Oct 31.

Abstract

We present a unified analysis of the scattering and diffraction of neutrons and photons using momentum representation in a full quantum description. The scattering event is consistently seen as a transfer of momentum between the target and the probing particles. For an elastic scattering process the observed scattering pattern primarily provides information on the momentum distribution for the particles in the target that cause the scattering. Structural information then follows from the Fourier transform relation between momentum and positional state functions. This description is common to the scattering of neutrons, X-ray photons and photons of light. In the quantum description of the interaction between light and the electrons of the target the scattering of X-rays is dominated by the first order contribution from the vector potential squared. The interaction with the electron is local and there is a close analogy, evident from the explicit quantitative expressions, with the neutron scattering case where the nucleus-neutron interaction is fully local from a molecular perspective. For light scattering, on the other hand, the dominant contribution to the scattering comes from a second order term linear in the vector potential. Thus the scattering of light involves correlations between electrons at different positions giving a conceptual explanation of the qualitative difference between the scattering of high and low energy photons. However, at energies close to resonance conditions the scattering of high energy photons is also affected by the second order term which results in a so called anomalous X-ray scattering/diffraction. It is also shown that using the momentum representation the phenomenon of diffraction is a direct consequence of the fact that for a system with periodic symmetry like a crystal the momentum distribution is quantized, which follows from Bloch's theorem. The momentum transfer to a probing particle is then also quantized resulting in a discrete diffraction pattern.

摘要

我们提出了一种使用动量表示的统一分析,用于全量子描述中子和光子的散射和衍射。散射事件被一致地视为目标和探测粒子之间的动量转移。对于弹性散射过程,观察到的散射模式主要提供了导致散射的目标中粒子的动量分布信息。结构信息随后遵循动量和位置态函数之间的傅里叶变换关系。这种描述适用于中子、X 射线光子和光的光子的散射。在光与目标电子之间相互作用的量子描述中,X 射线的散射主要由矢势平方的一阶贡献主导。与电子的相互作用是局部的,并且从明确的定量表达式中可以明显看出,与从分子角度来看原子核-中子相互作用完全局部的中子散射情况有密切的类比。另一方面,对于光散射,散射的主要贡献来自于矢势的线性二次项。因此,光的散射涉及不同位置的电子之间的相关性,从而为定性地解释高能和低能光子散射之间的差异提供了概念性的解释。然而,在接近共振条件的能量下,高能光子的散射也受到二阶项的影响,这导致了所谓的异常 X 射线散射/衍射。还表明,使用动量表示,衍射现象是由于具有周期性对称的系统(如晶体)的动量分布是量子化的这一事实的直接结果,这遵循布洛赫定理。然后,探测粒子的动量转移也被量子化,导致离散的衍射图案。

相似文献

1
Scattering and diffraction described using the momentum representation.
Adv Colloid Interface Sci. 2014 Mar;205:105-12. doi: 10.1016/j.cis.2013.10.025. Epub 2013 Oct 31.
2
Probing high-momentum protons and neutrons in neutron-rich nuclei.
Nature. 2018 Aug;560(7720):617-621. doi: 10.1038/s41586-018-0400-z. Epub 2018 Aug 13.
4
5
Anomalous X-ray diffraction with soft X-ray synchrotron radiation.
Cell Mol Biol (Noisy-le-grand). 2000 Jul;46(5):915-35.
7
Joint structure refinement of x-ray and neutron diffraction data on disordered materials: application to liquid water.
J Phys Condens Matter. 2007 Aug 22;19(33):335206. doi: 10.1088/0953-8984/19/33/335206. Epub 2007 Jul 4.
8
Photoionization with orbital angular momentum beams.
Opt Express. 2010 Feb 15;18(4):3660-71. doi: 10.1364/OE.18.003660.
9
On the theory of time-resolved X-ray diffraction.
J Phys Chem B. 2008 Jan 17;112(2):558-67. doi: 10.1021/jp075497e. Epub 2007 Dec 6.
10
Three-dimensional single-particle imaging using angular correlations from X-ray laser data.
Acta Crystallogr A. 2013 Jul;69(Pt 4):365-73. doi: 10.1107/S0108767313006016. Epub 2013 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验