Suppr超能文献

地佐辛的新型分子靶点及其临床意义。

Novel molecular targets of dezocine and their clinical implications.

机构信息

From the Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania (R.L. and J.X.); National Institute of Mental Health Psychoactive Drug Screening Program and Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (X-P.H. and B.L.R.); and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland (A.Y.).

出版信息

Anesthesiology. 2014 Mar;120(3):714-23. doi: 10.1097/ALN.0000000000000076.

Abstract

BACKGROUND

Although dezocine is a partial μ-opioid receptor agonist, it is not a controlled substance. Thus, the characterization of the molecular targets of dezocine is critical for scientific and clinical implications. The goal of this study is to characterize molecular targets for dezocine and determine their implications.

METHODS

A binding screen for dezocine was performed on 44 available receptors and transporter proteins. Functional assays for the novel targets were performed along with computation calculations to locate the binding site. A G protein activation study was performed for the human κ opioid receptor to determine whether dezocine is a κ-antagonist. Data are presented as mean ± standard error.

RESULTS

The affinities for dezocine were 3.7 ± 0.7 nM for the μ receptor, 527 ± 70 nM for the δ-receptor, and 31.9 ± 1.9 nM for the κ-receptor. Dezocine failed to induce G protein activation with κ-opioid receptor and concentration dependently inhibited κ-agonist (salvinorin A and nalbuphine)-induced receptor activation, indicating that dezocine is a κ-antagonist. Two novel molecular targets (norepinephrine transporter and serotonin transporter) were identified. Dezocine concentration-dependently inhibited norepinephrine and serotonin reuptake in vitro. The half maximal inhibitory concentrations (expressed as pIC50) were 5.68 ± 0.11 for norepinephrine transporter and 5.86 ± 0.17 for serotonin transporter. Dezocine occupied the binding site for known norepinephrine transporter and serotonin transporter inhibitors.

CONCLUSIONS

The unique molecular pharmacological profile of dezocine as a partial μ-receptor agonist, a κ-receptor antagonist, and a norepinephrine and serotonin reuptake inhibitor (via norepinephrine transporter and serotonin transporter) was revealed. These discoveries reveal potentially important novel clinical implications and drug interactions of dezocine.

摘要

背景

尽管地佐辛是一种部分 μ 阿片受体激动剂,但它不是受管制物质。因此,地佐辛的分子靶标特征对于科学和临床意义至关重要。本研究的目的是确定地佐辛的分子靶标并阐明其意义。

方法

对 44 种可用的受体和转运蛋白进行地佐辛结合筛选。对新靶标进行功能测定,并进行计算以定位结合部位。对人 κ 阿片受体进行 G 蛋白激活研究,以确定地佐辛是否为 κ 拮抗剂。数据表示为平均值 ± 标准误差。

结果

地佐辛对 μ 受体的亲和力为 3.7 ± 0.7 nM,对 δ 受体的亲和力为 527 ± 70 nM,对 κ 受体的亲和力为 31.9 ± 1.9 nM。地佐辛未能诱导 κ 阿片受体的 G 蛋白激活,并浓度依赖性地抑制 κ-激动剂(沙尔维诺林 A 和纳布啡)诱导的受体激活,表明地佐辛是 κ 拮抗剂。鉴定出两个新的分子靶标(去甲肾上腺素转运体和 5-羟色胺转运体)。地佐辛在体外浓度依赖性地抑制去甲肾上腺素和 5-羟色胺再摄取。半最大抑制浓度(表示为 pIC50)分别为 5.68 ± 0.11 对去甲肾上腺素转运体和 5.86 ± 0.17 对 5-羟色胺转运体。地佐辛占据了已知去甲肾上腺素转运体和 5-羟色胺转运体抑制剂的结合部位。

结论

地佐辛作为部分 μ 受体激动剂、κ 受体拮抗剂以及去甲肾上腺素和 5-羟色胺再摄取抑制剂(通过去甲肾上腺素转运体和 5-羟色胺转运体)的独特分子药理学特征得到揭示。这些发现揭示了地佐辛可能具有重要的新型临床意义和药物相互作用。

相似文献

1
Novel molecular targets of dezocine and their clinical implications.
Anesthesiology. 2014 Mar;120(3):714-23. doi: 10.1097/ALN.0000000000000076.
4
Comparative study of dezocine, pentazocine and tapentadol on antinociception and physical dependence.
Life Sci. 2021 Nov 15;285:119996. doi: 10.1016/j.lfs.2021.119996. Epub 2021 Sep 28.
5
Antidepressant-like effects of dezocine in mice: involvement of 5-HT1A and κ opioid receptors.
Behav Pharmacol. 2021 Sep 1;32(6):472-478. doi: 10.1097/FBP.0000000000000641.
8
Dezocine Alleviates Morphine-Induced Dependence in Rats.
Anesth Analg. 2019 Jun;128(6):1328-1335. doi: 10.1213/ANE.0000000000003365.

引用本文的文献

2
Overview and Prospects of the Clinical Application of Oliceridine.
Drug Des Devel Ther. 2025 Jun 26;19:5415-5430. doi: 10.2147/DDDT.S525471. eCollection 2025.
3
Postoperative analgesic effect of dezocine combined with sufentanil: A propensity score matching study.
Medicine (Baltimore). 2025 Jun 27;104(26):e43041. doi: 10.1097/MD.0000000000043041.
4
Opioid analgesics for sedation-based gastrointestinal endoscopy.
World J Gastrointest Pharmacol Ther. 2025 Jun 5;16(2):102098. doi: 10.4292/wjgpt.v16.i2.102098.
6
Dezocine and Addiction: Friend or Foe?
Pharmaceuticals (Basel). 2025 Mar 8;18(3):386. doi: 10.3390/ph18030386.
8
Revisiting dezocine for opioid use disorder: A narrative review of its potential abuse liability.
CNS Neurosci Ther. 2024 Sep;30(9):e70034. doi: 10.1111/cns.70034.
9
Case report: Dezocine's rapid and sustained antidepressant effects.
Front Pharmacol. 2024 Jul 18;15:1411119. doi: 10.3389/fphar.2024.1411119. eCollection 2024.
10
Influence of Light Irradiation on the Degradation of Dezocine in Injections.
Pharmaceutics. 2024 Jun 25;16(7):858. doi: 10.3390/pharmaceutics16070858.

本文引用的文献

1
Perioperative Pain Management for Patients on Chronic Buprenorphine: A Case Report.
J Anesth Clin Res. 2013 Oct 30;3(250). doi: 10.4172/2155-6148.1000250.
3
Neurochemical profiles of some novel psychoactive substances.
Eur J Pharmacol. 2013 Jan 30;700(1-3):147-51. doi: 10.1016/j.ejphar.2012.12.006. Epub 2012 Dec 21.
5
Noradrenergic reuptake inhibition in the treatment of pain.
Expert Opin Investig Drugs. 2012 Dec;21(12):1827-34. doi: 10.1517/13543784.2012.731393. Epub 2012 Oct 8.
6
Prescribed opioid difficulties, depression and opioid dose among chronic opioid therapy patients.
Gen Hosp Psychiatry. 2012 Nov-Dec;34(6):581-7. doi: 10.1016/j.genhosppsych.2012.06.018. Epub 2012 Sep 5.
7
Relationship of negative affect and outcome of an opioid therapy trial among low back pain patients.
Pain Pract. 2013 Mar;13(3):173-81. doi: 10.1111/j.1533-2500.2012.00575.x. Epub 2012 Jun 11.
8
Functional disability among chronic pain patients receiving long-term opioid treatment.
J Soc Work Disabil Rehabil. 2012;11(2):128-42. doi: 10.1080/1536710X.2012.677653.
9
Differential adaptive changes on serotonin and noradrenaline transporters in a rat model of peripheral neuropathic pain.
Neurosci Lett. 2012 May 2;515(2):181-6. doi: 10.1016/j.neulet.2012.03.050. Epub 2012 Mar 28.
10
Structure of the human κ-opioid receptor in complex with JDTic.
Nature. 2012 Mar 21;485(7398):327-32. doi: 10.1038/nature10939.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验