Suppr超能文献

实现针对胶质母细胞瘤治疗的个体化、生物学优化的放射治疗计划。

Toward patient-specific, biologically optimized radiation therapy plans for the treatment of glioblastoma.

机构信息

Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America.

出版信息

PLoS One. 2013 Nov 12;8(11):e79115. doi: 10.1371/journal.pone.0079115. eCollection 2013.

Abstract

PURPOSE

To demonstrate a method of generating patient-specific, biologically-guided radiotherapy dose plans and compare them to the standard-of-care protocol.

METHODS AND MATERIALS

We integrated a patient-specific biomathematical model of glioma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated radiation therapy optimization to construct individualized, biologically-guided plans for 11 glioblastoma patients. Patient-individualized, spherically-symmetric simulations of the standard-of-care and optimized plans were compared in terms of several biological metrics.

RESULTS

The integrated model generated spatially non-uniform doses that, when compared to the standard-of-care protocol, resulted in a 67% to 93% decrease in equivalent uniform dose to normal tissue, while the therapeutic ratio, the ratio of tumor equivalent uniform dose to that of normal tissue, increased between 50% to 265%. Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized plans would have a significant impact on delaying tumor progression, with increases from 21% to 105% for 9 of 11 patients.

CONCLUSIONS

Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for radiation therapy generated biologically-guided doses that decreased normal tissue EUD and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma.

摘要

目的

展示一种生成患者特异性、生物学指导的放射治疗计划的方法,并将其与标准治疗方案进行比较。

方法和材料

我们将胶质瘤增殖、侵袭和放射治疗的患者特异性生物数学模型与用于调强放射治疗优化的多目标进化算法相结合,为 11 名胶质母细胞瘤患者构建个体化、生物学指导的计划。针对几种生物学指标,对标准治疗和优化计划的患者个体化、球对称模拟进行了比较。

结果

集成模型生成了空间不均匀的剂量,与标准治疗方案相比,正常组织的等效均匀剂量降低了 67%至 93%,而治疗比(肿瘤等效均匀剂量与正常组织的比值)增加了 50%至 265%。将一种新的治疗反应度量(获得天数)应用于个体化模拟结果预测,优化计划将对延迟肿瘤进展产生显著影响,9 名患者中有 11 名患者的获得天数增加了 21%至 105%。

结论

使用生物数学模型与放射治疗优化算法相结合的个体化模拟生成了生物学指导的剂量,降低了正常组织的 EUD,并提高了治疗比,有可能改善胶质母细胞瘤治疗的生存结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae1/3827144/117616fdd5cf/pone.0079115.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验