Suppr超能文献

胶质母细胞瘤的数据驱动时空建模

Data-driven spatio-temporal modelling of glioblastoma.

作者信息

Jørgensen Andreas Christ Sølvsten, Hill Ciaran Scott, Sturrock Marc, Tang Wenhao, Karamched Saketh R, Gorup Dunja, Lythgoe Mark F, Parrinello Simona, Marguerat Samuel, Shahrezaei Vahid

机构信息

Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK.

Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK.

出版信息

R Soc Open Sci. 2023 Mar 22;10(3):221444. doi: 10.1098/rsos.221444. eCollection 2023 Mar.

Abstract

Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. By providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks. Our article thus strikes a unique balance. On the one hand, we provide a comprehensive overview of the available modelling techniques and their applications, including key mathematical expressions. On the other hand, the content is accessible to mathematicians and biomedical scientists alike to accommodate the interdisciplinary nature of cancer research.

摘要

数学肿瘤学在微观和宏观层面上为肿瘤生长提供了独特且极有价值的见解。本综述介绍了最先进的建模技术,并着重阐述了它们在理解胶质母细胞瘤(一种恶性脑癌)方面所起的作用。对于每种方法,我们总结了其适用范围、缺点和优点。我们突出了每种建模技术的潜在临床应用,并讨论了数学模型与用于为其提供信息的分子和成像数据之间的联系。通过这样做,我们旨在为癌症研究人员提供当前和新兴的计算工具,以帮助他们理解肿瘤进展。通过深入介绍不同的建模技术,我们还旨在协助那些寻求构建和开发自己的模型及相关推理框架的研究人员。因此,我们的文章实现了一种独特的平衡。一方面,我们全面概述了可用的建模技术及其应用,包括关键的数学表达式。另一方面,文章内容对于数学家和生物医学科学家来说都易于理解,以适应癌症研究的跨学科性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4038/10031411/e86d2f38f1fb/rsos221444f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验