Suppr超能文献

基于显微镜数据的二维扩散过程建模:参数估计和实际可识别性分析。

Modeling of 2D diffusion processes based on microscopy data: parameter estimation and practical identifiability analysis.

出版信息

BMC Bioinformatics. 2013;14 Suppl 10(Suppl 10):S7. doi: 10.1186/1471-2105-14-S10-S7. Epub 2013 Aug 12.

Abstract

BACKGROUND

Diffusion is a key component of many biological processes such as chemotaxis, developmental differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse observations, which result in uncertainties of the model parameters.

METHODS

We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the parameters we introduce profile likelihoods for diffusion processes.

RESULTS AND CONCLUSION

As proof of concept, we model certain aspects of the guidance of dendritic cells towards lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods.

摘要

背景

扩散是许多生物学过程的关键组成部分,如趋化性、发育分化和组织形态发生。最近,基于显微镜的成像技术可以在体外和体内评估扩散引起的空间梯度。二维高分辨率图像的时间序列与力学模型相结合,可以对潜在机制进行定量分析。然而,由于测量噪声和稀疏观测,基于模型的分析仍然具有挑战性,这会导致模型参数的不确定性。

方法

我们为具有对数正态分布噪声的基于图像的测量引入了似然函数。基于这个似然函数,我们提出了最大似然估计问题,并用偏微分方程约束优化方法来解决。为了评估参数的不确定性和实际可识别性,我们为扩散过程引入了轮廓似然。

结果与结论

作为概念验证,我们对树突状细胞向淋巴管的引导(趋化性的一个例子)的某些方面进行建模。使用一组真实的人工测量数据,我们估计了这个模型的五个动力学参数,并计算了轮廓似然。我们从图像数据中估计模型参数的新方法以及提出的可识别性分析方法广泛适用于扩散过程。基于轮廓的方法与局部逼近方法相比,提供了更严格的不确定性界限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/436d/3750519/e4335b4d0d84/1471-2105-14-S10-S7-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验